A Clear Roads Research Project

Understanding the True Cost of Snow and Ice Control

Webinar
December 18, 2013

Clear Roads' Goals

This research project is an effort of <u>Clear Roads</u> (A multi-state pooled research fund)

Clear Roads initiated this study to identify ways to better manage winter maintenance through:

- Having more data driven management
 - Understanding the link between level of effort and results (level of service achieved.)
- Improving efficiency and effectiveness of winter maintenance
 - Measuring efficiencies and make comparisons to identify improvements
- Better understanding and communicating costs of maintenance
 - Providing critical information to policy makers to support decisions

Data Analysis

To achieve these goals the research team evaluated available data from several states to developed a strategy for identifying the cost of work performed during a storm event.

Strategy: Link the work performed to the level of service achieved during a storm event.

- Provide data on which to evaluate cost of achieving LOS
- Identify specific efficiencies by comparing costs by work performed
- More easily communicate true cost of winter maintenance.

Data Gaps

- During the analysis, consistent data gaps were identified across states:
 - 1. There is no link between level of service and lane-mile cost
 - There is no link between assumptions regarding the number and intensity of storms to cost
- Most state DOTs use separate financial and maintenance management systems that track costs and work performed differently, resulting in these data gaps.
- The research team took the opportunity to evaluate the data collection efforts of state DOTs and recommend improvements.

Research: Data Received

Many DOT's provided data for analysis, but Maine had the most comprehensive data set most easily analyzed.

Maintenance Areas:

- Crew Name
- Lane-Miles by LOS
- Roadway Functional Class
- Urban or Rural

Storm Data:

- Unique Storm ID
- Crew Maintenance Area
- Storm Type
- Precipitation Depth
- Crew Actions & Dates

Material:

- Storm ID and Crew
- Material Name
- Quantities Used
- No Unit Costs
- Pass-Lane Miles

Labor:

- Storm ID and Crew
- Labor Category
- Hours
- Hourly Rate

Equipment:

- Storm ID and Crew
- Equipment Type
- Quantities
- Hours
- Hourly Rate
- Days
- Daily Rate

Lessons Learned: What Data to Collect?

- Allocate Costs Appropriately:
 - Use a unique storm identification number (ID) for each storm
 - Assign a unique crew and/or region IDs
 - Allocate costs to unique storm, crew and/or region ID
 - Document the number of lane-miles in the crew area by LOS
 - Record unit costs and quantities for labor, equipment, and materials
 - Record the pass-lane-miles accomplished during storm events by LOS (Data Limitation 1)
 - Record storm characteristics uniformly (Data Limitation 2)
- Data Integrity and Usability
 - Use a relational database
 - Reduce the use of unstructured fields
 - Don't concatenate fields

Lessons Learned: What Data to Collect? (Data Checklist)

Variable	Unit	Check
Storm Characteristics		
Storm ID Number	Name	
Date of Storm	mm/dd/yyyy	
Lane-miles Serviced	Lane-miles	
Pass Lane-miles Accomplished	Lane-miles	
Storm Duration	Hours	
Precipitation	Inches	
Storm Type	Туре	
Roadway Characteristics		
Private Contactor	Yes/No	
District Identification Number	Number/Code	
Crew I dentification Number	Number/Code	
Urban vs. Rural	Urban/Rural	
Lane Miles (in each crew area)	Lane-miles	
Materiak		
Material Name	Name	
Quantity	Unit	
Unit Cost	Dollars	
Equipment		
Equipment Name	Name	
Number of Units	Count	
Days per Unit	Days	
Hours per Day	Hours	
Daily Rate	Dollars	
Hourly Rate	Dollars	
Labor		
Labor Category/Position	Name	
Hourly Rate	Dollars	
Positions in Subarea	Count	
Number of Days on Job	Days	
Hours Worked per Day	Hours	

Lessons Learned: Storing Data for Analysis (Relational Database)

Storm Data

Storm ID

Region

Crew

Date of Storm

Storm Duration

Lane-Miles serviced (by LOS)

Pass Lane-Miles (by LOS)

Precipitation

Storm Type

Roadway Characteristics

Region

Crew

Contractor Maintained

Urban or Rural

Lane-Miles LOS A

Lane-Miles LOS B

Lane-Miles LOS C

Lane-Miles LOS D

Foreign keys illustrated with red and orange connections are necessary to link tables while maintaining granularity and allowing proper cost allocation at the region and crew level.

Materials

Storm ID

Material Name

Quantity

Unit Cost

Equipment

Storm ID

Equipment Name

Number of Units

Days Per Unit

Daily Rate

Hours Per Unit

Hourly Rate

Labor

Storm ID

Labor Category/Position

Hourly Rate

Labor Hours

Tool Development: Approach

- Given existing limitations in historical data, the team developed a tool that would achieve the original goals as new data is collected.
- The Clear Roads Team developed the following objectives for the tool:
 - Perform what-if scenario testing on unit costs
 - Communicate cost drivers to policy-makers and the public
 - Allow managers to better understand and manage costs
 - Compare winter maintenance costs across storms, regions, and states
 - Facilitate evaluation of the cost effectiveness of winter maintenance policies
 - Compare contracted vs. state maintenance
 - Compare winter maintenance costs over time
 - Directly link assumptions regarding the number and intensity of storms to cost
 - Directly link levels of service to lane-mile cost

Tool: Feature Overview

- The True Cost Tool:
 - Allows user to input data
 - Collects the data needed for analysis
 - Stores the data to facilitate data analysis
 - Supports estimation of storm cost
 - Incorporates additional tools to analyze the data entered
 - Average cost per lane-mile
 - Period comparison
 - Storm event comparison

Tool: Overview

Estimate Mode

Input: Estimated Data

- Storm Data Anticipated
- Crew Data
- Labor Estimated
- Equipment Estimated
- Materials Estimated

Output: Cost Summary

Data Entry Mode

Actual Data Input

- Storm Data Actual
- Crew Data
- Labor Used
- Equipment Used
- Materials Used

Output: Cost Summary

Analysis Tools

Period Comparison

- Comparison of Cost Over Time
- Cost Summary
- Cost per Mile
- Cost Breakdown

Storm Comparison

- Comparison Across
 Storm Events
- Cost Summary
- Cost per Mile
- Cost Breakdown

Database for Actuals

Estimates

Database for

Tool: Estimate Mode

Estimate Mode

Input: Estimated Data

- Storm Data Anticipated
- Crew Data
- Labor Estimated
- Equipment Estimated
- Materials Estimated

Output: Cost Summary

Data Entry Mode

Actual Data Input

- Storm Data Actual
- Crew Data
- Labor Used
- Equipment Used
- Materials Used

Output: Cost Summary

Database for Estimates

	Objectives	True Cost Tool
	Perform what-if scenario testing on unit costs	1
	Communicate cost drivers to policy-makers and the public	1
	Allow managers to better understand and manage costs	√

Cost Breakdown

Cost Breakdown

Tool: Data Entry Mode

- Crew Data
- Labor Estimated
- Equipment Estimated
- Materials Estimated

Data Entry Mode

Actual Data Input

- Storm Data Actual
- Crew Data
- Labor Used
- Equipment Used
- Materials Used

Output: Cost Summary

Analysis lonis		
Objectives	True Cost Tool	
Communicate cost drivers to policy-makers and the public	\checkmark	
Allow managers to better understand and manage costs	\checkmark	
Collect and store needed data for future analysis	+	

Database for

Tool: Storm Comparison Tool

Objectives	True Cost Tool
Compare winter maintenance costs across storms,	1
districts or regions, and states	≥
Facilitate evaluation of cost effectiveness of winter	\sim
maintenance policies	
Perform what-if scenario testing on unit costs	\checkmark
Communicate cost drivers to policy-makers and the public	\checkmark
Allow managers to better understand and manage costs	\checkmark

Analysis Tools

Storm Comparison

- Comparison Across
 Storm Events
- Cost Summary
- Cost per Mile
- Cost Breakdown

Database for

atabase ro Estimates

Tool: Storm Comparison Tool

Objectives	True Cost Tool
Compare contracted vs. state maintenance	\checkmark
Compare winter maintenance costs across time	\checkmark
Perform what-if scenario testing on unit costs	\checkmark
Communicate cost drivers to policy-makers and the public	\checkmark
Allow managers to better understand and manage costs	\checkmark

Analysis Tools

Period Comparison

- Comparison of Cost Over Time
- Cost Summary
- Cost per Mile
- Cost Breakdown

atabase to Estimates

Objectives - Results

- ✓ Perform what-if scenario testing on unit costs
- Communicate cost drivers to policy-makers and the public
- ✓ Allow managers to better understand and manage costs.
- ✓ Compare winter maintenance costs across storms, districts or regions, and states
- Facilitate evaluation of cost effectiveness of winter maintenance policies
- ✓ Compare contracted vs. state maintenance
- ✓ Compare winter maintenance costs across time
- Directly link assumptions regarding the number and intensity of storms to cost
- Directly link levels of service to lane-mile cost

True Cost Tool: Demonstration

- Demonstration of the True Cost Tool
 - Data Inputs
 - Summary Outputs
 - Saving Data
 - Analysis Tools
 - Storm Comparison
 - Period Comparison

Next Steps:

- ✓ Develop Estimation Tool
- ✓ Develop Data Collection Tool
- Develop Data Collection Methodology
 - Uniform data collection to ensure data integrity
- Develop Web-Based Tool
 - Easy access for data entry and data sharing among localities
- Support Data Collection by States
- Consolidate Collected Data and Perform Analysis
- Compare Aggregated Data
- Draw Conclusions and Present Results

Thank You

Questions?