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EXECUTIVE SUMMARY  

The objective of this project was to examine roadway grip, or friction, as a viable data source for 
informing winter maintenance operations, specifically identifying who is using grip data and how it is 
applied. Then using grip data, work to develop a methodology to inform material application rates. The 
end goal is to apply a developed algorithm that can be used as a tool to advise winter maintenance 
operators on salt application strategies in winter maintenance activities. The following work was 
completed to achieve the outlined objective. 

A literature review was conducted and identified grip sensor technology and other grip data sources 
such as floating car or crowd sourced data, reviewed the importance of data QA/QC, and sensor 
calibration to ensure good quality data is available. The literature review found roadway grip data has 
been used to support real-time decision making, planning, and post storm or post season reviews in 
winter maintenance operations. Roadway grip was identified as integrally involved in winter 
maintenance operations Idaho and Utah, and internationally in Finland, Norway, and Sweden. Specific 
winter maintenance focused decision support tools include the use of grip values to determine when 
roads are safe or if winter maintenance treatments are needed, identify or forecast roadway conditions, 
and treatment options.   

A survey of state and local transportation agencies was conducted to assess the use of grip data 
collection and use in winter maintenance operations. Eighteen states indicated they collect and use grip 
data in winter maintenance operations. The majority of the grip data was collected using stationary 
mounted non-contact sensors, with many also collecting grip data from mobile non-contact sensors. The 
collected grip data is being used to make real-time decisions, determine material application strategies, 
and for planning, and to a lesser extent for training and review of operations and forecasting. Many 
agencies indicated that the grip data is used in a variety of tools developed to support winter 
maintenance operations.  

Four case studies were developed on Linking Salt Spreader Controller Data with mobile Road Weather 
Information Sensors, Snow Operations Application Suite, Third-Party Friction Data from Vehicles (Crowd 
Sourced/Floating Car Data), and Friction Data and Pikealert.  Each case study presents an application of 
grip data in winter maintenance operations. 

The algorithms and a decision-making tool were developed using one unique grip dataset collected from 
stationary RWIS mounted non-contact sensors. An innovative long-short term memory (LSTM) neural 
network model was established to predict the time-dependent evolution of surface grip levels with the 
inputs of weather parameters, road surface temperature, and salt application rates. The LSTM model 
considers the sequential effects of road surface grip levels during the winter weather events and makes 
recommendations on salt application rates based on the prediction of road surface grip levels until the 
desired grip level is achieved. In addition, the effects of influencing factors on friction change before and 
after salt application are analyzed using another dataset of grip collected from mobile non-contact 
sensors. The random forest model performed the best among different machine learning models. The 



  

 

 

most important variables identified from the analysis included surface state after application, surface 
state before application, air temperature after application, water thickness before application, and 
surface temperature after salt application. 

Recommendations on the use of grip data to support decision making of salt application rates include 
the importance of using large robust data sets, QA/QC of data, sensor calibration, uniformity of data 
collection, and the development of guidance for agencies to support these efforts. To advance the use 
of the developed decision-making tool, agency specific data should be further collected to refine the 
model.  
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 INTRODUCTION 

Measurement and monitoring of roadway friction coefficients are critical components of road safety and 
maintenance practices. Accurate friction coefficient data plays a crucial role in assessing and improving 
the safety and performance of roadways, particularly in adverse weather conditions. Traditional 
methods of measuring friction coefficients often involve manual testing or stationary devices, which 
may limit the timeliness and efficiency of data collection (Claros et al., 2021). Non-invasive sensors, 
which can be positioned away from the road surface either overhead, at the roadside, handheld, or on 
vehicles, employ techniques such as spectroscopy, thermal radiation, or infrared radar to ascertain 
surface conditions from afar (Fay et al., 2018; Fay et al., 2013). Recent advancements in sensor 
technology have led to the development of mobile sensors specifically designed for roadway friction 
coefficient measurement. These sensors offer the ability to collect real-time friction coefficient data 
while on the move.  

Predicting roadway friction coefficients is a growing field that may be able to aid in ensuring safe and 
efficient transportation systems. Accurate predictions of friction coefficients can help inform decision-
making processes related to road maintenance, vehicle design, and overall road safety. Traditional 
methods of predicting friction coefficients often rely on empirical models or manual testing, which may 
have limitations in terms of accuracy and efficiency (Juga et al., 2013; Wiener et al., 2022). However, 
with the advancements in machine learning methods, there is a growing interest in leveraging these 
techniques to predict roadway friction coefficients with higher precision and reliability. Abohassan et al. 
(2023) utilized a location-specific and event-based framework to investigate the influence of different 
weather variables and maintenance operations on the variability of the pavement friction coefficients 
during snowstorms in urban environments. The results suggested that precipitation, extremely low 
temperatures, and the potential for black ice formation worsen pavement friction coefficients. Whereas,  
plowing operations, application of anti-icing chemicals before snowstorms, and frequent deicing 
operations have a significant impact on improving pavement friction (Abohassan et al., 2023). Novel 
predictive models were developed to measure road surface friction, using data from a road-based 
passive sensor system, to provide decision-making support for maintenance operators (Rasol et al., 
2023). 

Machine learning algorithms have the capability to analyze large datasets and extract valuable insights 
that can enhance the accuracy of friction coefficient predictions. Deep learning models have been 
applied to predict the amount of salt applied at the wheel paths using historical data collected by the 
road mounted sensors and an optical sensor in Sweden (Hatamzad et al., 2022b). By incorporating 
Shapley Additive Explanations (SHAP) techniques into machine learning models, researchers can gain 
deeper insight into the factors influencing friction coefficient predictions and understand the 
contribution of each feature to the model's output. This advanced methodology allows for more 
transparent and interpretable friction coefficient predictions, enabling stakeholders to make informed 
decisions regarding road maintenance and safety measures. The integration of SHAP techniques with 
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machine learning methods holds promise for improving the accuracy and reliability of friction coefficient 
predictions, ultimately leading to more effective strategies for managing road surfaces and ensuring safe 
driving conditions (Lundberg et al., 2017). 

The objective of this project was to examine roadway grip, or friction, as a viable data source for 
informing winter maintenance operations, specifically identifying who is using grip data and how it is 
applied. Then using grip data, work to develop a methodology to inform material application rates. The 
end goal is to apply a developed algorithm that can be used as a tool to advise winter maintenance 
operators on salt application strategies in winter maintenance activities.  

The report presents the work completed as follows. 

CHAPTER 2: Methodology 

CHAPTER 3: Literature Review 

CHAPTER 4: Survey Results 

CHAPTER 5: Case Studies 

CHAPTER 6: Algorithm and decision-Making Applications 

CHAPTER 7: Recommendations 

CHAPTER 8: Conclusions 
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 METHODOLOGY 

2.1 LITERATURE SEARCH 

A literature review was conducted that focused on past and on-going projects, relevant information on 
grip data use in winter maintenance operations, grip sensor technologies, and tools used to apply grip 
sensor data to inform winter maintenance operations.  

Databases used to gather information included: Transportation Research Information Database, Google 
Scholar, ISI Web of Science, Montana State University Library, and similar sources. Research conducted 
in Canada, Europe, and from other available international sources was reviewed, along with the ongoing 
research and existing documents published by the DOTs, Clear Roads, Pacific Northwest Snowfighters 
(PNS) Association, University Transportation Centers (UTCs), Strategic Highway Research Program 
(SHRP), FHWA, National Cooperative Highway Research Program (NCHRP), Airport Cooperative Research 
Program (ACRP), American Public Works Association (APWA), and AASHTO, and presented at the Winter 
Maintenance Peer Exchanges. 

A summary of the identified relevant literature is provided in Chapter 3: Literature Review. 

2.2 SURVEYS 

A survey was developed using Qualtrics, a web-based survey tool. The developed survey was distributed 
on September 21, 2022 to the Clear Roads Technical Panel and Members states, the Snow & Ice List 
Serv, the Transportation Research Board (TRB) Winter Maintenance Committee and the Road Weather 
Committee, and relevant transportation agencies involved in a recent Aurora project Roadway Friction 
Modeling. The survey was closed on October 21, 2022. 

A summary of the survey results is provided in Chapter 4: Survey Results. The survey questionnaire is 
provided in APPENDIX A – Survey Instrument and notes from a follow-up interview are provided 
Appendix B – Interview with Nira Dynamics. 

2.3 CASE STUDIES 

Case studies were developed using information gathered from the literature, survey responses, and 
follow-up interviews. The following case studies were developed on the use of grip data in winter 
maintenance operations: 

• Linking Salt Spreader Controller Data with Mobile Road Weather Information Sensors 
(Massachusetts Department of Transportation (DOT) and University of Massachusetts, Amherst) 

• Snow Operations Application Suite (Idaho Transportation Department) 

https://aurora-program.org/research/in-progress/roadway-friction-modeling/
https://aurora-program.org/research/in-progress/roadway-friction-modeling/
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• Third-Party Friction Data from Vehicles (Crowd Sourced/Floating Car Data) (Iowa DOT), Wejo, 
and Nira Dynamics) 

• Friction Data and Pikalert (Alaska DOT and Public Facilities (DOT&PF) and the National Center for 
Atmospheric Research (NCAR)) 

The developed case studies can be found in CHAPTER 5: Case Studies. A list of individuals and 
organizations in which follow-up interviews conducted to capture additional information for the case 
studies can be found in APPENDIX C – Case Study Interviewees (Table 9). 

2.4 ALGORITHM & DEICSION-MAKING FOR SALT APPLICATION 

Friction data from multiple sources was evaluated along with additional road weather variables, from 
RWIS stations, and AVL data to assess the feasibility of using grip to optimize winter maintenance 
operations and develop a decision-making tool for salt application rates to achieve the desired friction. 
Data was used from two states, Iowa DOT and Colorado DOT, and included surface friction levels from 
grip sensors, air and pavement surface temperatures, precipitation (rate), dew point, and applied winter 
maintenance treatments (including initial and subsequent operations of deicing, etc.).  

Details of how all data sources were processed and models developed can be found in Chapter 6: 
Algorithm and decision-Making Applications. 
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 LITERATURE REVIEW 

3.1 FRICITON MEASUREMENT TECHNOLOGIES 

Severe weather-related crashes account for 21% of all vehicle crashes worldwide (Sollen and Casselgren, 
2021). Monitoring road weather and road condition can increase the efficiency of winter maintenance 
activities and reduce weather-related crashes. A factor of considerable interest is road grip or friction, 
which indicates how slippery the road surface is. There are several instruments which have been utilized 
to collect roadway grip data. 

Data Collection Methods 

The following general methods are used to collect roadway grip data - stopping distance, deceleration 
measurements, from calculations using data provided by instrumentation and data acquisition 
equipment added to/or present on vehicles (Fay et al., 2010), or from non-contact sensors mounted on 
roadside or on vehicles. While slightly outdated, Fay et al. (2010) provides a summary of many of these 
friction measuring methods, the functionality, and data quality produced. This report provides 
discussion of friction wheels or skid trailers. While not the focus of this effort, it is important to note that 
roadway grip data from other data collection methods is often validated by friction wheels/skid trailers. 
From a pavement maintenance perspective, locked wheel tests or variable slip devices are commonly 
used to collect friction data annually or for forensic analysis after accidents. This data can be used to 
determine baseline pavement friction in non-winter conditions. Due to the lack of winter deployment 
and limited data collected in US from these devices, this effort will focus on grip data collected from 
non-contact sensors mounted on roadside or on vehicles, or from data collected by the vehicles 
themselves and is presented below.  

3.1.1.1 Stationary Road Weather Information Systems (RWIS) 

Road weather information systems (RWISs) are sensor stations which utilize both in-pavement and non-
intrusive sensors to gather real-time atmospheric and pavement surface condition data including grip. 
An ongoing study, in which this research team is working with Colorado DOT, found that non-contact 
stationary RWIS-based grip sensors provide consistent and robust roadway grip datasets due to the 
passive nature of the station (e.g., always on) and their density in the network (e.g., there are a lot of 
them compared to other grip sensors). However, stationary grip sensors mounted at the RWIS sites 
provide limited data coverage of an area, because they are only pointing at one location on the 
pavement, leaving data coverage gaps across a state. Routine maintenance and calibration of these 
sensors is required annually at a minimum. Table 1 provides information on commonly used stationary 
non-contact friction sensors currently available.  
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Table 1. Stationary Sensors 

Stationary Sensor 
Image 

Name Manufacturer Website 

 

RWS10 Teconer https://www.teconer.com/surface-condition-
friction-measurements/ 

 

 

r-condition Boschung https://www.boschung.com/en/product/r-
condition/ 

 

 

Remote Road 
Surface State 
and 
Temperature 
Sensors DST211 
and DST111 

Vaisala https://www.vaisala.com/en/products/weath
er-environmental-sensors/remote-surface-
state-sensor-dsc211 

https://www.vaisala.com/en/products/weath
er-environmental-sensors/remote-road-
surface-temperature-sensor-dst111  

 

Stationary Road 
Weather 
Information 
Sensor 

Lufft/OTT 
Hydromet 

https://www.lufft.com/products/road-
runway-sensors-292/starwis-umb-stationary-
road-weather-information-sensor-2317/  

https://www.teconer.com/surface-condition-friction-measurements/
https://www.teconer.com/surface-condition-friction-measurements/
https://www.boschung.com/en/product/r-condition/
https://www.boschung.com/en/product/r-condition/
https://www.vaisala.com/en/products/weather-environmental-sensors/remote-surface-state-sensor-dsc211
https://www.vaisala.com/en/products/weather-environmental-sensors/remote-surface-state-sensor-dsc211
https://www.vaisala.com/en/products/weather-environmental-sensors/remote-surface-state-sensor-dsc211
https://www.vaisala.com/en/products/weather-environmental-sensors/remote-road-surface-temperature-sensor-dst111
https://www.vaisala.com/en/products/weather-environmental-sensors/remote-road-surface-temperature-sensor-dst111
https://www.vaisala.com/en/products/weather-environmental-sensors/remote-road-surface-temperature-sensor-dst111
https://www.lufft.com/products/road-runway-sensors-292/starwis-umb-stationary-road-weather-information-sensor-2317/
https://www.lufft.com/products/road-runway-sensors-292/starwis-umb-stationary-road-weather-information-sensor-2317/
https://www.lufft.com/products/road-runway-sensors-292/starwis-umb-stationary-road-weather-information-sensor-2317/
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Stationary Sensor 
Image 

Name Manufacturer Website 

 

Non-Invasive 
Road Sensors 
NIRS31-UMB 

Lufft/OTT 
Hydromet 

https://www.lufft.com/products/road-
runway-sensors-292/non-invasive-road-
sensor-nirs31-umb-2307/  

 

Ice Sight HighSierra  No longer available as of March 12, 2024 
(Additional information can be found at: 
https://hsierra.com/?s=IceSight) 

 

3.1.1.2 Mobile Mounted Sensors 

Mobile mounted sensors are mounted on vehicles and collect road condition data along the routes the 
vehicle travels. Generally, these sensors are mounted on supervisors’ vehicles, but more recently some 
sensors can be mounted on plows. Mobile sensors provide grip data for routes and can be used to help 
fill data gaps between RWIS sites. However, if the vehicle is not routinely driving the routes and 
collecting grip data on a regular basis, insufficient data will be collected to make informed decisions. It is 
recommended that mobile sensors are calibrated more regularly (daily, weekly, monthly) for a variety of 
reasons (hostile environment, cleaning of optics, variation in pavement types, etc.) and the frequency of 
calibration will be unique to each sensor. See manufacturers’ guidelines for calibration frequency and 
methods. Table 2 provides information on commonly used mobile (vehicle) mounted non-contact 
friction sensors currently available. 

 

 

 

 

https://www.lufft.com/products/road-runway-sensors-292/non-invasive-road-sensor-nirs31-umb-2307/
https://www.lufft.com/products/road-runway-sensors-292/non-invasive-road-sensor-nirs31-umb-2307/
https://www.lufft.com/products/road-runway-sensors-292/non-invasive-road-sensor-nirs31-umb-2307/
https://hsierra.com/?s=IceSight
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Table 2. Mobile Mounted Sensors 

Mobile Sensor Image Name Manufacturer Website 

 

RCM511 Teconer https://www.teconer.com/surface-condition-
friction-measurements/ 

 

MD30 Vaisala https://www.vaisala.com/en/products/weather-
environmental-sensors/mobile-detector-md30 

 

 

MARWIS 

 

Lufft/OTT 
Hydromet 

 

https://www.lufft.com/products/road-runway-
sensors-292/marwis-umb-mobile-advanced-
road-weather-information-sensor-2308/ 

 

 

Mobile 
IceSight 

High Sierra No longer available as of March 12, 2024 
(Additional information can be found at: 
https://hsierra.com/?s=IceSight) 

 

https://www.teconer.com/surface-condition-friction-measurements/
https://www.teconer.com/surface-condition-friction-measurements/
https://www.vaisala.com/en/products/weather-environmental-sensors/mobile-detector-md30
https://www.vaisala.com/en/products/weather-environmental-sensors/mobile-detector-md30
https://www.lufft.com/products/road-runway-sensors-292/marwis-umb-mobile-advanced-road-weather-information-sensor-2308/
https://www.lufft.com/products/road-runway-sensors-292/marwis-umb-mobile-advanced-road-weather-information-sensor-2308/
https://www.lufft.com/products/road-runway-sensors-292/marwis-umb-mobile-advanced-road-weather-information-sensor-2308/
https://hsierra.com/?s=IceSight
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3.1.1.3 Floating Car Data (FCD) or Crowd Sourced Data 

Third parties, like NIRA Dynamics, Volvo Cars, and RoadCloud, have begun utilizing floating car data 
(FCD), or crowd sourced data, to collect data from vehicle software components. This data can be 
collected from passenger vehicles or fleet vehicles and can be displayed on a graphic user interface (GUI) 
which is map-based. NIRA and Volvo Cars estimate roadway grip using a slip-based method which looks 
at wheel speeds. This method allows for grip data to be collected utilizing existing sensors in the vehicle 
(Sollen and Casselgren, 2022; Sollen and Casselgren, 2021). This method collects grip data from the 
wheel track, which represents the closest condition to what a driver experiences on the road. The 
disadvantage of this data is that is it event-based, meaning deceleration, acceleration, or steering results 
in more data being captured. If a vehicle is traveling at a constant speed, limited data will be collected 
(Wallin, 2022; Sollen and Casselgren, 2021). RoadCloud uses optical sensors to estimate roadway grip. 
While this method can provide continuous grip estimations, it does require extra equipment to be 
installed on a vehicle (Sollen and Casselgren, 2022; Sollen and Casselgren, 2021). 

NIRA Dynamics collects data from vehicles equipped with a tire grip indicator (TGI) which collects road 
surface grip data (Zachrisson et al., 2022). TGI is a software component within the vehicle which 
continuously monitors grip between the tire and the roadway. In addition, the TGI collects data on air 
temperature, relative humidity, and windshield wiper speed. NIRA has collected grip data from fleets of 
vehicles in Sweden since 2016 and in the Netherlands since 2019. TGI has been integrated into vehicles 
produced by the Volkswagen Group since 2020, with nearly two million vehicles produced with TGI 
worldwide each year (Zachrisson et al., 2022). All data is aggregated and anonymized by NIRA. This data 
can be utilized to adopt performance-based winter maintenance operations. For example, real-time grip 
data can identify low friction locations which can be used to prioritize winter maintenance activities or 
collected data can be used to evaluate winter maintenance operations either post-storm or post-season.  

The Swedish Transport Administration initiated the Digital Winter Project to examine FCD. FCD was 
collected from three suppliers, NIRA Dynamics, Volvo Cars, and RoadCloud. This study found that FCD 
provides similar friction results when compared to a reference method like ViaFrictionm (Sollen and 
Casselgren, 2022), a tow behind friction wheel, and that FCD coverage made it possible for the Swedish 
Transport Administration to evaluate the results of maintenance actions during events. The Digital 
Winter Project found that FCD fleets can provide thousands of grip measurements each minute, 
particularly during peak traffic time periods, allowing for greater data coverage across the road network 
(Karim, 2022). The Swedish Transport Administration identified the following benefits of using FCD 
including better optimization of winter maintenance activities, reductions in negative environmental 
impacts in winter maintenance activities, reduced traffic crash-related costs, and reduced winter 
maintenance operations costs (Karim, 2022).  

Rijkswaterstaat (RWS), the highway agency of the Netherlands, has been working with NIRA Dynamics 
FCD since the winter season 2019/2020 to improve their winter maintenance operations. RWS found 
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several uses for FCD, including reducing the number of RWIS sites needed, improving route-based 
forecasting, and better examination of roadway condition trends which allows for targeted and 
optimized winter maintenance activities (Donker, 2022).  

3.1.1.4 Data QA/QC and Sensor Calibration 

Consistent data quality assurance/quality control (QA/QC) ensures that the data collected is of good 
quality. QA/QC includes consistent periodic examinations of collected data to ensure that the data 
makes sense. This process can help with early identification of sensors that are down or providing odd 
readings.   

Routine maintenance and calibration of any grip sensors is key to ensuring quality data is being 
captured. This includes things like periodic cleaning or wiping off the surface of the sensor and ensuring 
that all sensors are calibrated to the manufacturers’ specifications at the recommended frequency.  

 

3.2 USE OF ROADWAY GRIP DATA IN WINTER OPERATIONS 

How is grip, friction, data used in WMO? 

Roadway grip data has increasingly been of interest to state DOTs and to local and international 
transportation agencies as it provides a quantitative way to inform and support winter maintenance 
operations. Roadway grip is of particular interest, because grip values will decrease during winter events 
as the roadway moves from bare pavement, to wet and or snowy and icy conditions, and this has 
impacts on mobility and safety. Grip data can be incorporated into winter maintenance operations in 
many ways including:  

Real-Time Decision Making 

• Determining when/where roads are no longer safe. 
• Determining when/where roads are safe. 

Planning 

• Determining when to begin winter maintenance operations. 
• Determining potential problem areas/hot spots. 

Post-Storm/Post-Season Review 

• Examine the time period in which the roadway grip was below a defined value or threshold. 
• Examine grip recovery time. 



  

 

23 

 

• Evaluate performance of winter maintenance activities to determine which techniques are more 
effective. 

Who is using grip data in WMO? 

Transportation agencies are increasingly using grip data to inform and support winter maintenance 
operations. Several agencies have utilized a grip threshold or a defined grip cutoff point between safe 
and unsafe road conditions to determine when and where to maintain a road or as a method to 
measure performance.  

3.2.2.1 United States 

IDAHO DEPARTMENT OF TRANSPORTATION 

Idaho Transportation Department (ITD) implemented a number of key performance indicators (KPIs) to 
evaluate the effectiveness of their winter maintenance program. Using data from their RWIS network, 
ITD evaluated pattens in grip and adopted a grip level parameter for their winter maintenance 
operations. When the grip measured by Vaisala’s DSC111 sensors was at or below 0.6, then conditions 
are expected to have an impact on mobility. This threshold of 0.6 is used in ITD’s winter mobility index 
which is a KPI measured for each storm. The mobility index ranges from 0 to 1, representing the amount 
of time the road conditions did not impact mobility, or the percentage of time the grip value did not fall 
below 0.6 and with precipitation on a below-freezing roadway. The mobility index is measured as: 

Mobility Index = [Grip ≥ 0.6 duration (hours)/combined events duration (hours)] % 

Now maintained by Vaisala, which provides the Mobility Index output on their user interface. ITD’s 
implementation of performance indicators including the mobility index have allowed ITD to assess how 
well its winter maintenance budget was being utilized (ITS International, 2013). These indicators have 
allowed the agency to adjust and improve WMO in order to improve efficiency and reduce costs.  

Work by Walsh investigated the feasibility of applying ITD Mobility Index in Colorado (Walsh, 2016). 
Walsh found that the Mobility Index can be applied in Colorado and used as a performance 
management tool-based analysis of CDOTs RWIS data from sections along the I-25 and I-70 corridors. 
This report assumes that road grip at or below 0.6 indicates the need for treatment or winter operations 
to be deployed. 

UTAH DEPARTMENT OF TRANSPORTATION 

The Utah Department of Transportation (UDOT) uses a real-time road weather index to evaluate 
weather conditions, road conditions, and maintenance performance. The UDOT road weather index 
quantifies atmospheric conditions and road conditions into a single value; this index accounts for 
snowfall rate, road temperature, precipitation type, and road grip (Williams, 2022). This index has 
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allowed UDOT to evaluate winter maintenance operations under various conditions, assess resource 
use, budget and plan for a storm or winter season.  

As a part of the road weather index, UDOT has created a performance metric “Rubik’s Cube”, which is 
used to determine when road conditions have met an acceptable standard (Figure 1). A grip threshold of 
0.50 is used to determine when a road has gone from Red (needs improvement) to Yellow (acceptable). 

 

Figure 1. UDOT Performance Metric Rubik's Cube (copied from Williams (2022)) 

3.2.2.2 International 

FINLAND 

Finland uses grip measurements to ensure roads remain safe for users. In Finland, they have established 
road quality standards depending on the road maintenance category (which is based on traffic volume).  
When a road drops below the set standard grip value (typically around 0.25), it must be returned to that 
standard within a specific amount of time depending upon the road maintenance class which is based 
upon average daily traffic (ADT) and classification, see Table 3, Figure 2, and Figure 3.  
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Table 3. Friction (grip) Value and Driving Conditions for Finland (Recreated from Zein (2009)) 

Friction 
Value 

0.00 – 
0.14 

0.15 – 
0.19 

0.20 – 0.24 0.25 – 
0.29 

0.30 – 
0.44 

0.45 – 
1.00 

Driving 
Condition 

Very 
Slippery 

Slippery Satisfactory 
Winter 
Conditions 

Good 
Winter 
Condition 

Not 
Slippery 

Not 
Slippery 

 

 

 

Figure 2. Finland, Road Maintenance Classes (Copied from Zein (2009)) 
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Figure 3. Finland, Winter Maintenance Quality Standards (Copied from Zein (2009))  

SWEDEN 

The Swedish Road Administration’s current grip thresholds are used as a standard to bring roads back to 
safe driving conditions within a specified amount of time. This threshold is determined based on the 
road classification, precipitation type, and road surface temperature. Generally desired grip thresholds 
range between 0.20 – 0.35, see Figure 4. Generally, a higher-volume road has a higher grip threshold 
when compared with lower-volume roads.  
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Figure 4. Sweden, Friction (grip) Thresholds (Copied from Zein (2009))  

NORWAY 

Norway uses grip thresholds as a standard to bring roads back to safe driving conditions in a specified 
amount of time. This threshold is determined based on the traffic volume, as average annual daily traffic 
volume (AADT). High-volume roads need to be brought back to a friction coefficient of 0.4, whereas low-
volume roads need to be brought back to a friction coefficient range of 0.15 to 0.25 (Figure 5).  
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Figure 5. Norway, Friction Thresholds (Copied from Zein (2009)) 

Performance metrics utilizing grip data are unique to each transportation agency, depending on the goal 
of the metric. Example metrics include determining when to treat the roadway or determining the time 
required to bring a road back to safe driving conditions, etc. Generally, international grip thresholds are 
lower (around 0.2 to 0.4) when compared with those used in the United States (0.6). Finding the 
appropriate grip threshold(s) to guide or evaluate winter maintenance activities can be challenging for 
agencies concerned with driver safety. To determine the most appropriate grip threshold value for your 
agency consider 1) what grip measurement method best fits your agency and 2) determine the 
relationship between grip measurements and crash risk in your region (Wallman and Astrom, 2001). 

  

3.3 DECISION SUPPORT TOOLS 

Using grip data in winter maintenance operations can be as simple as viewing the data and making an 
informed decision, such as is done when using grip thresholds. More advanced techniques exist that 
incorporate road surface condition, temperature, or grip into decision support tools to aid in providing 
specific guidance for winter maintenance operations, such as deicing products and application rates. 
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Machine learning based prediction models and decision support tools that apply to the winter 
maintenance environment or use grip are discussed here. 

Machine Learning Based Prediction of Surface Condition and Salt Application 

Burris (2018) developed random forest models to predict the observed errors between Road Weather 
Information Systems (RWISs) and North American Land Data Assimilation System (NLDAS) for the 
surface and two-meter temperatures. The corrected temperatures were used with different weather 
variables for the development of the Condition Acquisition Reporting System (CARS) classifier, as shown 
in Table 4. Decision tree and random forest models were applied to classify the surface condition into 
Good, Fair, Difficult, and Hazardous. The impacted percentage of road miles was estimated based on the 
weather feature data using an Artificial Neural Network (ANN) model.  

Table 4. Weather Variables for  Classification of Road Condition (Burris 2018)  

 

Tabrizi et al. (2021) used machine learning techniques to propose an accurate and reliable pavement 
surface temperature prediction model for road salt management based on the records of hourly 
temperatures during winter. The proposed methodology was validated using pavement surface 
temperature data from RWIS and hourly air temperature and solar radiation data from Environment 
Canada. The deep neural network integrated a Convolutional Neural Network (CNN) with a Long Short-
Term Memory (LSTM).  LSTM, Convolutional-LSTM (ConvLSTM), Sequence-to-Sequence (Seq2Seq), and 
Wavelet neural network (Wavenet) models were compared with the proposed model, and the analysis 
results indicated that the accuracy of proposed model was better than the other models.  
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Hatamzad et al. (2022a) used four methods to predict road surface temperatures, including linear 
regression, support vector regression, random forest regression, and artificial neural network. A five-
stage framework for intelligent cost-effective WRM prediction was used, including data development 
analysis (DEA), data acquisition and analysis, feature engineering, feature selection, and cross validation 
and model evaluation. The results suggested that the proposed methodology could be applied in other 
prediction applications. 

Ahabchane et al. (2019) used machine learning methods to predict the quantity of abrasive and salt 
required for a specific road segment for each hour based on weather conditions, truck telemetry data, 
and segment attributes. Geographic information systems (GISs) assisted the researchers to investigate 
the street-network characteristics. The analysis results indicated that the XGBoost method performs 
better than other machine learning algorithms. The most important variables were number of passes, 
segment length, traffic (annual average daily traffic), previous salting quantity, number of passages, 
truck identity for salt application, roadway width, air pressure, temperature, and elevation. The 
proposed method could be applied to other regions for different applications of salt and various winter 
road maintenance practices. 

Hatamzad et al. (2022b) developed an ANN model to predict the amount of salt on the wheel track 
based on the historical data measured by an optical sensor, road mounted sensors, and road condition 
stations in Sweden. Variables included surface temperature, air temperature, dew point temperature, 
level of grip, ice layer, precipitation, concentration, conductivity, snow height, freezing temperature, 
and maximum wind speed. Figure 6 illustrates the relationship between the freezing temperature, 
amount of chemical, and level of grip. Decreasing freezing temperature and increasing amount of 
chemical on the wheel track would improve the driving quality on the road surface. The accuracy of the 
developed ANN model was found as high as 97%.  
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Figure 6. Relationship between the freezing temperature, amount of chemical (g), and level of grip (Hatamzad et 
al., 2022b)  

Machine Learning Based Winter Road Maintenance 

Casas et al. (2011) developed a system based on data-mining and multi-agent paradigm to determine 
the actions to keep the road clean of ice or snow. The data collected at the measurement stations 
located near the area of interest and stored in the database was used in the multi-agent system, as 
shown in Figure 7. The multi-agent system consisted of a validation sub-system, prediction sub-system, 
classification sub-system, and actuation sub-system. The validation sub-system was used to validate the 
input data to ensure a maximum quality. The prediction sub-system was applied to estimate the 
meteorological parameters of interest for decision-making, including air temperature, relative humidity, 
and road surface temperature. The goal of the classification sub-system was to classify the future state 
of the road surface to decide whether preventive action might be taken. The actuation sub-system was 
responsible for determining the amount of salt required to maintain clean road surface without ice or 
snow before a hazardous road situation occurs based on the historical data, numerical prediction, and 
road state classification. 
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Figure 7. Multi-agent system structure for winter maintenance (Casas et al., 2011)  

Hatamzad et al. (2021) developed a classification prediction model for winter road maintenance 
efficiency by combining DEA and machine learning approaches for the improvement of decision support 
systems. Road condition data was collected in equivalent time intervals by road weather information 
systems, optical sensors, and road-mounted sensors. Input of DEA model included surface temperature, 
base temperature, precipitation, snow height, grip, conductivity, and concentration of chemicals, while 
output was the amount of chemicals. DEA was applied to calculate efficiency scores according to which 
efficient and inefficient classes of decision-making units were classified. A series of Machine Learning 
(ML) approaches were used to classify the labeled efficient and inefficient decision-making units. 
Support vector machine (SVM) model with optimized parameters by genetic algorithm (GA) was found 
to perform better than other techniques. As shown in Figure 8, conductivity of salt, base temperature, 
and level of grip were the top three important input variables for winter road maintenance efficiency. In 
the proposed approach, inefficient units need to be considered for further assessments.  
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Figure 8. Importance of input variables affecting winter road maintenance efficiency (Hatamzad et al., 2021) 

An ongoing project, sponsored by FHWA, is working to develop an AI-based closed-loop approach for 
winter maintenance decision making (Kessler, 2021). The proposed decision-making framework consists 
of data, prediction, decision-making, intervention, and feedback, as shown in Figure 9. The research 
team intend to design the system to collect and process the data through recurrent neural network for 
deep reinforcement learning to automatically make maintenance decisions. The results from traffic and 
road conditions will be analyzed using Convolutional Neural Network (CNN) to verify the outcomes and 
enhance decision-making in the future. The closed-loop approach for winter maintenance activities will 
start again for another scenario with continuous improvement imbedded in the process as a core 
principle. 
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Figure 9. Flowchart of proposed approach for winter maintenance decision making (Kessler, 2021)  
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 SURVEY RESULTS 

A total of 41 individuals responded 
to the survey. Of the 41 responses, 
24 respondents (58.5%) indicated 
that their agency or organization 
uses roadway grip data in their 
winter operations, see Figure 10. 
Those that indicated they do not use 
roadway grip data in their winter 
operations were thanked for their 
time and closed out of the survey.   

 

 

 

 

Respondents came from 18 states across the US, see Figure 11.  

 

Figure 11. Respondent States that indicated they use roadway grip data in winter operations. 

59%

41%
Yes

No

Figure 10. Does your agency use roadway grip data in winter 
operations? 
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4.1 HOW IS GRIP DATA BEING COLLECTED? 

Respondents were asked to share how their agency collects roadway grip data. Twenty-two (22) 
respondents answered this question (see Table 5 and Figure 12). Stationary road weather information 
system (RWIS) mounted sensors were the most common grip data collection method being used by 18 
respondents (81.8%). Mobile mounted sensors on vehicles are being used by 12 respondents (54.5%). 
Skid trailers or friction wheels are used by 1 respondent (0.5%). None of the respondents are using 
floating car data or crowd sourced data to collect grip data. One respondent (0.5%) from Iowa 
Department of Transportation (DOT) answered other when asked to specify the respondent stated that 
they recently obtained Wejo data which included grip data however they were currently in the testing 
and research phase.  

Wejo is a third-party data provider powered by Nira Dynamics. Wejo collects data from millions of 
connected vehicles and provides road network insights like road temperature, slippery road alerts, and 
live road network updates which can be used to improve winter maintenance operations.1 The research 
team conducted a short interview with NIRA Dynamics after they reached out during the surveying 
process. Notes from that interview are shared in Appendix B – Notes from Interview with NIRA 
Dynamics. 

 

Figure 12. Responses on how agencies collect roadway grip data. 

 

1 Wejo no longer exists. 
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Table 5. How does your agency collect roadway grip data? 

Agency State Floating Car Data 
or Crowd Sourced 
Data 

Mobile Mounted 
Sensors on 
Vehicles 

Skid Trailer or 
Friction Wheel 

Stationary Road 
Weather Information 
Systems (RWIS) 
Mounted Sensors 

Other 

Alaska DOT&PF Alaska 

   

x 

 

Arizona DOT  Arizona 

   

x 

 

Colorado DOT Colorado 

 

x 

 

x 

 

Idaho Transportation Department Idaho 

   

x 

 

Illinois Dot Illinois 

   

x 

 

Niles Public Works - Illinois Illinois 

   

x 

 

Roadway Concessionaire - Indiana Indiana 

 

x 

   

City of West Des Moines - Iowa Iowa 

 

x 

 

x 

 

Iowa DOT Iowa 

   

x x 

Maine DOT  Maine 

 

x 

 

x 

 

Massachusetts DOT Massachusetts 

 

x x x 

 

Montana DOT Montana 

   

x 

 

New Hampshire DOT New Hampshire 

   

x 

 

New Hampshire DOT New Hampshire 

   

x 
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Charlotte DOT - North Carolina North Carolina 

 

x 

   

North Dakota DOT North Dakota 

 

x 

 

x 

 

Ohio DOT Ohio 

 

x 

 

x 

 

Pennsylvania DOT Pennsylvania 

 

x 

 

x 

 

Rhode Island Airport Corporation Rhode Island 

 

x 

 

x 

 

Rhode Island DOT Rhode Island 

 

x 

   

Utah DOT Utah 

   

x 

 

Jefferson County Highway - 
Wisconsin 

Wisconsin 

 

x 
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4.2 HOW IS GRIP DATA BEING USED? 

Respondents were asked how their agency uses grip data in their winter operations. Twenty-two (22) 
respondents answered this question (see Table 6 and Figure 13). The majority of respondents (17 
respondents, 77.3%) use grip data for real-time decision making (routing, calling in crews, etc.), material 
application strategies (15 respondents, 68.2%), and for planning (determining when to begin operations, 
identifying problem areas, etc.) (12 respondents, 54.5%). Around a third of respondents use grip data for 
forecasting or for retrospective reviews of winter maintenance operations.  

 

 

Figure 13. Responses on how agencies use roadway grip data in winter operations.
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Table 6. How does your agency use roadway grip data? 

Agency State Forecasting Material 
Application 
Strategies 

Planning (determining 
when to begin 
operations, identifying 
problem areas, etc.) 

Real-Time 
Decision Making 
(routing, call in 
crews, etc.) 

Retrospective 
Review of 
Operations (agency 
performance/cost 
review) 

Other 

Alaska DOT&PF Alaska x x x x 

  

Arizona DOT  Arizona 

     

x 

Colorado DOT Colorado 

 

x x x 

  

Idaho Transportation 
Department 

Idaho 

 

x 

 

x 

  

Illinois DOT Illinois 

  

x 

  

x 

Niles Public Works - Illinois Illinois 

 

x x x 

  

Roadway Concessionaire - 
Indiana 

Indiana 

 

x x x x x 

City of West Des Moines - 
Iowa 

Iowa x x x x x 

 

Iowa DOT Iowa x x 

 

x 

  

Maine DOT Maine x 

  

x 

  

Massachusetts DOT Massachusetts 

 

x x x x 

 

Montana DOT Montana 

     

x 

New Hampshire DOT New Hampshire 

   

x x 
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New Hampshire DOT New Hampshire 

    

x 

 

Charlotte DOT - North 
Carolina 

North Carolina 

 

x 

 

x 

  

North Dakota DOT North Dakota 

 

x 

 

x x 

 

Ohio DOT Ohio 

     

x 

Pennsylvania DOT Pennsylvania x x x x x 

 

Rhode Island Airport 
Corporation 

Rhode Island 

 

x x x 

  

Rhode Island DOT Rhode Island x x x x 

  

Utah DOT Utah x x x x x 

 

Jefferson County Highway - 
Wisconsin 

Wisconsin 

 

x x x 
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Five respondents noted that they are using grip data in another way, see Table 7. These included using 
grip data to look at bare pavement regain time post-precipitation. Most of these responses noted that 
grip data is currently being evaluated for use in their agency.  

Table 7. Additional explanatory responses on how agencies use grip data in winter operations. 

Agency Response 

Illinois DOT The implementation of the data is being reviewed for potential 
improvements. 

Ohio DOT They are looking at the data, but we do not have a formal plan on how 
to use the data. 

Roadway Concessionaire - Indiana Bare pavement regain post precip[itation] 

Montana DOT Informational only at this point, as we have only 1 RWIS station with 
grip (out of 78 stations), and it has been installed for less than 4 
months. 

Arizona DOT Still evaluating. 

  

Last, respondents were then asked whether their agency incorporates roadway grip data into any tools 
like a maintenance decision support system (MDSS) or a winter severity index (WSI). Out of the 22 
responses, 12 respondents (54.5%) indicated they currently incorporate grip data into a tool. 
Explanatory responses are provided in Table 8. Three agencies noted using grip data for post-storm 
reporting and evaluation of winter maintenance operations, including the use of grip data in a weather 
severity index (Maine DOT and Pennsylvania DOT). Several agencies mentioned incorporating grip data 
into a maintenance decision support systems (MDSS) or other real-time decision-making tools. One 
agency (Colorado DOT) noted that they have incorporated grip data into public travel notifications.  

Table 8. Explanatory responses on how agencies incorporate roadway grip data in any tools. 

Response Agency 

Data is ingested into our Pikalert Enhanced Maintenance Decision 
Support System (EMDSS) and used in forecast models.  

Alaska DOT&PF 

This is through the third-party AAR.  Arizona DOT  

We share our data with our weather service provider to provide 
more timely and accurate forecasts and treatment 
recommendation.  

City of West Des Moines - Iowa 
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Mobile sensors [are] mounted on supervisor vehicles to see if there 
are areas being neglected or inadvertently missed. [Grip data is] 
incorporated into MDSS and public travel notifications. 

Colorado DOT 

Forecasters have access to the data. Field staff use as needed for 
decision making. 

Iowa DOT 

We have two friction meters. One mounted on a plow and the 
other on a vehicle. The data is collected and used by WisDOT and 
the Traffic Operations and Safety (TOPS) Lab at UW Madison. We 
use the friction recordings to make real time field decisions. 

Jefferson County Highway - 
Wisconsin 

It is used in standard post-storm reporting of treatment and WSI. Maine DOT 

We are embarking on a research project that will feed roadway grip 
levels into a salt spreader controller. Grip levels will be used to 
control the salt spreader's dispensation rate. 

Massachusetts DOT 

It is incorporated into the MDSS application to be viewed only.  
Currently it is not used in the modeling.  We have 16 MARWIS 
[mobile grip sensors] on plow trucks being used in real time 
decision making. 

North Dakota DOT 

PennDOT incorporates roadway grip data into the Winter Severity 
Index for end of the season review. 

Pennsylvania DOT 

Runway, Taxiway and Apron Snow and Ice Control for both 
chemical applications and to relay the surface conditions to 
inbound and outbound air traffic. 

Rhode Island Airport Corporation 

Road grip is incorporated into our snow and ice performance 
measure. 

Utah DOT 
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 CASE STUDIES 

The following four case studies have been developed to highlight the use of grip data in winter 
operations. 

5.1  LINKING SALT SPREADER CONTROLLER DATA WITH MOBILE ROAD WEATHER 
INFORMATION SENSORS 

Massachusetts Department of Transportation/University of Massachusetts Amherst 

The Massachusetts Department of Transportation (MassDOT) has partnered with the University of 
Massachusetts Amherst (UMass Amherst) to develop a salt spreader controller program that will use 
data from mobile road weather information systems (mobile RWISs, MD30 from Vaisala), which will be 
installed on MassDOT snowplows.  

MassDOT owns over 300 material spreaders and contracts 1,200 additional material spreaders which 
apply salt, salt/sand, or liquid deicers on Massachusetts roadways. These material spreaders use 
Certified Cirus (Cirus SpreadSmart system) controllers and Bosch Rexroth (Compu-Spread systems) to 
control material spread rates. This project will incorporate mobile RWIS data to improve the assessment 
of roadway conditions and make informed decisions on material application rates in order to maintain 
the roadway level of service while reducing environmental impacts. The current system requires manual 
reading of the mobile RWIS data, and this project will look to integrate an automated system that will 
use an integrated grip value from mobile RWIS data (e.g., grip value, road and ambient temperatures) 
and an integrated surface state from an external camera system (e.g., roadway surface condition and 
snow/ice condition) to adjust the spreader controller in order to optimize material use.  

This automated system will include three modules: 1) mobile RWIS data collection, which will organize, 
transfer and store data from the mobile RWIS sensors; 2) treatment decision-making module, which will 
be an automated decision-making algorithm to determine material application rates necessary; and 3) 
spreader control module which will implement the decision and provide a user interface.  

UMass Amherst worked with MassDOT to install MD30 mobile RWIS on two snowplows. The mobile 
RWIS data will be used to develop an automated decision-making algorithm for determining material 
application rates, which will be based on MassDOT’s current recommended application rates. This will 
be used in coordination with automated vehicle location (AVL) and cameras to examine roadway 
condition and track plow location.  

This project is currently in its early phase. Data will be collected, and winter maintenance operation 
performance will be examined over two winter seasons (2022-2023 and 2023-2024). UMass Amherst 
will also complete field scenario testing to validate the mobile RWIS sensor-based model for the 
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material spreader controller. If this method is verified, then the project will be expanded, and detailed 
training tutorials and presentations will be developed. 

This project ended in July 2024, after this case study was developed. The following additional 
information has been provided to support this effort based on information from the final report (Ai et a., 
2024). Mobile RWIS and AVL data were used to optimize material application rates. To do this hardware 
integration, software development, along with a road surface condition deep learning algorithm and salt 
prediction model were used. Using both winter weather and performance data, and simulations they 
found the salt rate prediction model performed best showing 34-37% in potential salt saving using the 
developed system while maintaining similar performance. Ultimately they were able to send grip values 
from the mobile sensor to the spread controller system on the snowplow to dispense the 
commensurate amount of salt. 

CONTACT INFORMATION 

Mark Goldstein, MassDOT, mark.a.goldstein@state.ma.us 

Chengbo Ai, UMass Amherst, chengbo.ai@umass.edu 

5.2 SNOW OPERATIONS APPLICATION SUITE 

Idaho Transportation Department 

Idaho Transportation Department (ITD) partnered with Environmental Systems Research Institute (ESRI) 
to develop the Snow Operations Application Suite. This application was developed with the goal of 
providing a way to automate, visualize, and communicate ITD’s Mobility Cost Efficiency (MCE) 
calculations which are used by Idaho’s maintenance districts to examine the amount and types of 
deicing materials used during a storm and make recommendations to reduce the amount of deicing 
material being used on roadways while maintaining the roadway level of service. The MCE is used to 
examine performance over storm events and winter seasons and to track resources used including 
material, labor, and equipment. Previously ITD was completing MCE calculations manually which is time 
consuming for maintenance district forepersons. The developed application allows these calculations to 
be completed automatically and provides a geographical view of this data.  

The MCE utilizes storm data attributes collected from the state’s 130 road weather information system 
(RWIS) stations and automatic vehicle location (AVL) data from snowplows to determine if the Clear 
Roads treatment recommendations (material application rates) which are used to compare against the 
actual material application rate used. For example, ITD costs and salt use versus that recommended by 
Clear Roads [(ITD costs/Clear Roads)x100]. If the score is 100% than roads were treated “perfectly”, less 
than 100% would indicate that ITD did not treat roadways in the same manner as was recommended by 

https://www.mass.gov/doc/development-of-a-salt-spreader-controller-program-using-machine-sensed-roadway-weather-parameters-final-report/download
mailto:mark.a.goldstein@state.ma.us
mailto:chengbo.ai@umass.edu
https://www.clearroads.org/project/15-01/
https://www.clearroads.org/project/15-01/
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Clear Roads during that storm event. The MCE is calculated for segments of roadways, which are roughly 
2-mile sections of roadway nearest to a RWIS site.  

The application was developed over a few years. It originally was tested at four RWIS sites in Northern 
Idaho and was rolled out  by ITD for all RWIS sites in November 2022. The application includes three 
modules: 

1) Live View: The live view includes data on the last three storm events for each RWIS segment, see 
Figure 14. If a critique is recommended (a critique identifies areas for potential improvement 
based on pretreatment, response timing, application rates, and resource constraints), then a 
user can pull up event statistics including MCE, a summary of all data inputs, costs (equipment, 
driver, material), etc. MCE compares actual treatment data versus the Clear Roads treatment 
matrix. Data is based on a one-hour lap time. Friction data is reported as a range in Live View, 
and currently detailed friction data tied to application rates are not provided.  
 
The live view also provides ITD’s mobility score for each RWIS site. ITD’s mobility score utilizes a 
roadway grip threshold of 0.6, as a key performance metric for winter maintenance operations. 
If roadway grip is at 0.6 or lower, then conditions are expected to have an impact on mobility. 
The mobility index ranges from 0 to 1, representing the amount of time that road conditions did 
not impact mobility, or the percentage of time where the grip value did not fall below 0.6.  
 

Figure 14. ITD MCE Live View showing a route with grip level percentages. 



  

 

47 

 

2) Statewide/Seasonal View: This view provides data for all storms for the season organized by 
maintenance district, see Figure 15. Data can be viewed by RWIS site or by region. This data 
includes total storm events/duration, aggregate MCE value, actual and target costs, actual and 
target equipment miles, average material usage, and mobility scores. 

 

3) Historic View: The historic view displays the same data as the live view but for all storms of a 
winter season (whereas the live view only provides data on the previous three storms), see 
Figure 16. This data is organized by maintenance district and can be filtered down to individual 
RWIS sites. 

ITD’s overall goal with the snow operations application suite is to assess mobility across the state. In this 
case, mobility is defined as dry or wet pavement and above freezing (or non-icy pavement). This index 
improved mobility dramatically over the state from 28% to 80%, but now ITD wants to track how much 
deicing material (salt) it is taking to maintain this level of mobility and whether the improved mobility is 
at the expense of over salting or increased costs.  

CONTACT INFORMATION  

Ty Winther, ITD Maintenance Operations Manager, Ty.Winther@itd.idaho.gov 

Figure 15. ITD MCE Statewide View 

mailto:Ty.Winther@itd.idaho.gov
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Figure 16. ITD MCE Event Viewer for District 5 Fish Creek Summit showing the event count on the left, and historic viewer summarizing equipment, labor, 
costs, material use targets versus actual, we well as event duration, precipitation, temperature, etc. 
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5.3 THIRD-PARTY FRICTION DATA FROM VEHICLES (CROWD SOURCED/FLOATING CAR 
DATA) 

Wejo and Iowa Department of Transportation/Iowa State University 

Connected vehicle data or third-party data have entered the US market, providing data to help address 
mobility challenges. Wejo2 was a third-party data provider powered by Nira Dynamics. Wejo collected 
data from 13.7 million connected vehicles. Data is pulled through agreements with vehicle 
manufacturers (or original equipment manufacturer (OEMS)) from both the United States and Europe. 
Data is collected using a one-way communication process from in-vehicle sensors. The data was then 
processed to standardize variables across multiple OEMS and can provide road network insights like 
road temperature, slippery road alerts, and live road network updates which can be used to improve 
winter maintenance operations. 

Data is collected every 3 seconds along a vehicle’s trip. Data on driving events collected includes date, 
time, location, speed, heading, ignition states, and events including things like harsh braking/harsh 
acceleration (defined as ±2.67 m/s), wiper status, and anti-lock brake activation. This data is then 
transmitted from a SIM card over the cellular network. In cases like rural areas where there may be 
spotty cellular network coverage, the data can be stored and will be transmitted when the vehicle is 
back in service. No personal information is collected and therefore personal travel information cannot 
be tied to the data. The GPS location for the data collected is accurate enough to allow lane level 
analysis, or to about 1-3 meters.  

Data could be provided as a raw data file for vehicle trips or as aggregate reports. In addition to 
providing raw data, other data tools were available, such as the real-time traffic intelligence which 
allowed a user to look at a road network in real-time including travel time and speed of a road segment 
and identify slowdowns and incidents. Nira Dynamics, a third-party connected vehicle data provider 
based in Europe, provides a Road Health tool which examines road degradation and Winter Road 
Insights which can provide slippery road alerts and real time road condition information. The Winter 
Road Insight tool is currently not available in the United States due to a lack of vehicle penetration (e.g., 
limited number of European manufactured vehicles in the U.S.) but could be in the future. The Road 
Health and Winter Road Insights tools are priced based on the total road miles for a transportation 
agency. Whereas Wejo’s raw data was priced based on the size of the data files (data, time, how many 
vehicles, etc.).  

Iowa State University (ISU) working on behalf of Iowa DOT, has begun to work with raw vehicle data 
from Wejo. ISU purchased data in October 2022 to examine whether this type of data could be used to 

 

2 Wejo no longer exists. Data is now being used from Streetlight. 

https://niradynamics.se/
https://www.niradynamics.com/products/road-health
https://www.niradynamics.com/products/winter-road-insights
https://www.niradynamics.com/products/winter-road-insights
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support Iowa DOT and determine how this data could be used. [Note that ISU was not using any of the 
off-the-shelf tools offered by Wejo.] The raw data  included vehicle movement data (which is continuous 
– described as breadcrumbs every three seconds along a vehicle’s journey) and detailed event data 
(point data) for a vehicle trip. Data elements provided include location, speed, seatbelt on/off, harsh 
braking/acceleration, anti-lock brake (ABS) engagement, turn signals on/off, stability control, etc. (see 
Figure 17). This equates to an extremely large volume of data for each day which is provided as a data 
dump each night.  

 

Figure 17. Example of vehicle movement data (continuous) and event data (points). Graphic Credit: Iowa State 
University, Institute for Transportation  

ISU is working to analyze this data set to better understand how representative the data is and what 
data events it can represent. ISU has recently finished relating the data to Iowa DOT’s linear reference 
system (road network data) which includes data on things like road name, speed limit, road grade, and 
shoulder width. Data is being collected from vehicles that were manufactured in 2015 or newer, and ISU 
has found that the data represents around 6 percent of vehicles traveling across the state. Note that ISU 
also identified a bias in the data towards more affluent areas, which can have up to 10 percent vehicle 
penetration. They are now working to examine how this data could be used. For example, is a vehicle 
braking due to slippery conditions or because they saw wildlife on the roadside? Is there a threshold of 
vehicles slowing down that would indicate one event versus the other? ISU will be working with the data 
to tease out patterns and develop dashboard tools which can allow for data analysis and application of 
the information. Additional analysis will include looking at how other data sources, like weather data, 
can be integrated for a more in-depth analysis.  Currently, ISU is working to build confidence in the data 
and determine how Iowa DOT can best move forward using this data.  

ISU has just begun to delve into what the data can do, and it seems like the data possibilities are 
endless. ISU is continuing to work through ways to streamline processing the raw data and organize it 
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into a usable format. Many offices within Iowa DOT are planning to use this data. The potential 
applications for data like this make the cost easy to justify because costs can be shared across multiple 
offices. For winter maintenance operations, Iowa DOT plans to start with looking at traction control and 
ABS with current weather data in order to detect slippery conditions. The findings could influence how 
and where to conduct public messaging about wintery conditions. 

The ISU and Iowa DOT project is just one that has begun to examine how third-party floating car data 
could potentially be used to support DOT operations. Several universities across the US have ongoing 
projects using similar data. Purdue University has two ongoing projects which are examining things like 
the impact of weather on traffic speeds and leveraging connected vehicle data for winter operations 
performance measurement.  

CONTACT INFORMATION 

Tina Greenfield, Iowa Department of Transportation, tina.greenfield@iowadot.us  

Neal Hawkins, Iowa State University Institute for Transportation, hawkins@iastate.edu   

Alex Lee-Warner, Wejo (Interviewed) 

5.4 FRICTION DATA AND PIKEALERT 

Alaska Department of Transportation & Public Facilities 

Pikalert was developed by the National Center for Atmospheric Research (NCAR) to provide data-driven 
road weather information to both road maintenance agencies and the traveling public in the form of a 
maintenance decision support system. The Pikalert System provides road weather forecasts for up to 72 
hours and treatment recommendations. Pikalert uses connected vehicle data, road weather information 
systems (RWIS) data, radar, and weather forecast models (FHWA, 2017). Key data elements used in 
Pikalert include precipitation, road surface condition, visibility data, and blow over risk to assess road 
segments and determine road segment alerts and appropriate treatment options. These treatment 
recommendations and alerts can be based on unique user characteristics allowing for tailored 
recommendations based on the user’s environment and maintenance level of service 
requirements/guidelines. For example at Alaska Department of Transportation and Public Facilities 
(Alaska DOT & PF) recommendations have been tailored to account for the lack of solar gain as Alaska 
experiences few daylight hours during the winter season (FHWA, 2017). Data fed into the Pikalert 
system is run through multiple quality assurance and quality control checks. The system offers three 
user interfaces; 1) an Enhanced Maintenance Decision Support System (EMDSS) which is geared towards 
road maintenance agencies and provides segment alerts and treatment recommendations, 2) Motorists 
Advisories and Warnings (MAW) which is a web-interface that provides road weather information and 
travel alerts (currently available in participating states), and 3) MAW Mobile App. This is a smartphone 

mailto:tina.greenfield@iowadot.us
mailto:hawkins@iastate.edu
https://ral.ucar.edu/solutions/products/pikalert
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application version of the MAW (currently only available for the Denver International Airport)(FHWA, 
2017).  

Pikalert has recently started to ingest roadway grip data and display this data within the Pikalert 
dashboard. NCAR’s general plan with roadway grip data is to integrate this information into the alerting 
capacity of the road weather model. Roadway grip is not currently integrated into Pikalert’s pavement 
condition module. Incorporation of roadway grip data would help to improve this algorithm and 
Pikalert’s forecasting, and roadway grip could serve as truthing data for the system. However, roadway 
grip data is not available from every RWIS site and friction sensor density is variable in each state, with 
many states having fewer than 50% of RWIS sites collecting this data.  

The Alaska Department of Transportation and Public Facilities (Alaska DOT & PF) uses Pikalert to support 
winter operations by monitoring road conditions, see Figure 18. AKDOT & PF currently have two road 
weather information systems (RWISs) which also collect roadway grip data, both located in Fairbanks. 
[AKDOT P&F have public facing RWIS data which can be access at https://roadweather.alaska.gov/gis. 
This roadway grip data can also be viewed through Vaisala’s Wx Horizon platform and through Pikalert’s 
EMDSS display. [Note, AKDOT & PF RWIS uses Vaisala sensors and pay to use the Vaisala dashboard Wx 
Horizon.] Pikalert provides Alaska DOT & PF with various forecast models from the next 6 hours, 6 hours 
to 24 hours, and 24 hours to 72 hours to aid in planning of maintenance activities. Alaska DOT & PF’s 
incorporation of roadway grip data is currently limited, however they are considering incorporating 
roadway grip data from mobile sensors (MD30s, the Vaisala mobile mounted sensor).  

https://roadweather.alaska.gov/gis
https://www.vaisala.com/en/road-maintenance/wx-horizon
https://www.vaisala.com/en/road-maintenance/wx-horizon
https://www.vaisala.com/en/products/weather-environmental-sensors/mobile-detector-md30
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Figure 18. Alaska DOT& PF Pikalert Website 

CONTACT INFORMATION 

Dan Schacher, Alaska DOT & PF, daniel.schacher@alaska.gov 

Dr. Gerry Wiener, NCAR, gerry@ucar.edu  

Amanda Siems-Anderson, NCAR, aander@ucar.edu  

 

mailto:daniel.schacher@alaska.gov
mailto:gerry@ucar.edu
mailto:aander@ucar.edu
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 ALGORITHM AND DECISION-MAKING 
APPLICATIONS 

This chapter is divided into three sections, the first describing the analysis of road weather information 
system (RWIS) data from Iowa DOT, the second describing the analysis of mobile road condition data 
from Colorado DOT. The detailed procedure of data processing/integration and model 
development/application was discussed in each section. Third, a decision-making process for salt 
application using the developed model is provided with sensitivity analysis. Limitations in data collection 
and AVL data quality were summarized, and recommendations are made to address these limitations. 

6.1 DECISION MAKING OF SALT APPLICATION USING RWIS DATA 

Data Collection and Processing 

6.1.1.1 Road Weather Information System (RWIS) Data 

Many transportation agencies use Road Weather Information System (RWIS) stations to enhance winter 
roadway maintenance. RWIS stations are installed at fixed locations and provide point-based 
measurements. The information collected by these stations helps agencies make informed winter 
maintenance and operational decisions to support mobility and traveler safety. RWIS stations can be a 
combination of invasive and non-invasive sensors. Non-invasive sensors are located on the roadside 
away from the road surface, are typically mounted to point down at the roadway, and use spectroscopy, 
thermal radiation, or infrared radar to ascertain surface conditions (Fay et al., 2013). Non-invasive 
sensors typically report data on  air and pavement temperature, roadway surface condition (dry, damp, 
wet, icy, etc.), and estimate surface grip (friction) values, but are limited to these data elements (Fay et 
al., 2014). 

The Iowa DOT operates and maintains an extensive RWIS network (62 stations) throughout the state. 
These stations are strategically placed along highways and roads to gather road weather data and road 
surface condition information. In this study, the road surface condition and weather data collected 
during the winter seasons of 2021-2022 (November through March) and 2022-2023 (October through 
April) were processed and analyzed for the Ankney RWIS station on the bridge deck located on 
Interstate Highway I-35. Pavement-related data included surface condition, friction (surface grip), 
road/bridge surface temperature, freezing temperature, conductivity, and salinity. Weather variables 
included precipitation accumulation, precipitation rate, precipitation intensity, precipitation type, dew 
point temperature, air temperature, pressure, relative humidity, wet bulb temperature, wind gust 
speed, wind speed, wind direction, and visibility.  

Table 9 summarizes the road surface and weather variables used in the model development in this 
study. All the RWIS variables were first checked, but only the atmospheric variables showing significant 
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impact on the grip level were used to develop the predictive model. It is noted that the precipitation 
rate is in liquid rate and thus has a snow-to-liquid ratio of 10:1.  

Table 9. Summary of RWIS data used in this study. 

Dataset Description Symbol Unit Range 
Road 

surface -
related 

Text description of 
surface grip level 

Grip N/A low, medium, 
high 

Road 
surface -
related 

Road/bridge surface 
temperature 

BridgeTemp ℉ -11-104 

Weather Precipitation rate 
(liquid) 

PrecipitationRate inch/hour 0.01-0.84 

Weather Air temperature Temperature ℉ -12-83 
Weather Relative humidity RelativeHumidity % 10-99 
Weather Wind speed WindSpeed mph 1-41 

 

Figure 19 (a)-(e) illustrates the boxplots of wind speed, precipitation rate, relative humidity, air 
temperature, and surface temperature. The horizontal line and square point in the middle of box 
indicate the median and mean values, respectively. These variables were recorded successively at the 
RWIS station with a time interval of 5 minutes during the entire winter season. Air temperature, relative 
humidity, and surface temperature in the 2021-2022 winter season were found to be lower than those 
in the 2022-2023 winter season, while wind speed decreased during 2022-2023. It is noted that the 
precipitation rate is in liquid rate and thus has a snow-to-liquid ratio of 10:1. 
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Figure 19. Boxplot of (a) wind speed; (b) precipitation (snow) rate; (c) relative humidity; (d) air temperature; and 

(e) surface temperature. 

Figure 20 shows the change of grip level (friction coefficient) ((a)(c)) along with the road surface 
temperatures and precipitation rate (as snow) ((b)(d)) during the two winter seasons. The roadway grip 
data provided by Iowa DOT are described as low, medium, and high as measured by the sensor from 
Vaisala and the actual values of grip are not known. Changes in road surface grip are clearly observed to 
be associated with snowstorms that happen in the winter season. The continuous changing of surface 
temperature was observed, while the precipitation rate kept at zero except during snow events.  

(a) (b) 

(c) (d) (e) 
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(a) 

 
(b) 
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(c) 

 
Figure 20. (a) Change of grip level; (b) surface temperature and precipitation rate during the 2021 to 2022 winter 
season; (c) change of grip level; and (d) surface temperature and precipitation rate during the 2022 to 2023 
winter season. 

6.1.1.2 Automatic Vehicle Location (AVL) and Salt Application Data 

Automatic vehicle location (AVL) is a technology that utilizes a global position system (GPS) to determine 
the geographic location of a vehicle, and an overview of vehicle travel can be managed by a vehicle 
tracking system. AVL technology on snowplows can allow for accurate and timely data snowplow 
location data, plow sensor data (example: salt application rate), and road condition data in real-time.  

The salt application rate data collected from plow trucks with the AVL system was provided by the Iowa 
DOT. The AVL plow truck data provided included the truck location (start/end milepost, longitude, 
latitude, and altitude), truck speed, solid material application rate, accumulated solid material applied, 
anti-icing material (liquid) application rate, and accumulated anti-ice material applied. The application 
rates of solid salt were considered in this study, which ranged from 3 to 436 pounds/lane-mile (lb./ln-mi) 
across all the data records. Salt data are recorded for solid, prewet, and anti-icing (liquid) in raw data, 
but the value for anti-icing (liquid) is zero. Pre-wet rates were added to solid materials after unit 
conversion and considered as total salt application. However, the pre-wet rate is relatively low at the 
range of 2-12 gallon/ln-mile. 

Data from the Ankeny RWIS site and corresponding AVL plow truck were coordinated and located using 
ArcGIS and Google Earth. Figure 21 shows the location of Ankeny RWIS site on I-35 southbound (SB), in 
which the red dots show the location data points reported by the AVL for the 23 plow trucks passing the 
site and applying the salt during the two winter seasons. The AVL plow truck data within 0.4 miles from 
the RWIS site was extracted, and the plow truck location was estimated to be as close as 50 feet from 
the RWIS site.  
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Figure 21. AVL plow truck data around the Ankeny RWIS station on I-35 (Red dots are plow truck location data 

reported through the AVL system). 

6.1.1.3 Integration of RWIS and AVL Plow Truck Data 

RWIS and AVL plow truck data were obtained from two separate datasets and were collected over 
inconsistent observation periods and time intervals. The data was processed to match and integrate the 
two datasets before further analysis, shown in the flow chart in Figure 22. First, the start and end of 
snowstorms were identified in the weather data, focusing on storms that lasted more than one day. 
Then the corresponding road surface grip levels (low, medium, and high) were identified from the 
pavement observation dataset. Note that Iowa DOT only reports grip categorically as low, medium, and 
high and does not collect numerical coefficient of friction values. Next, the salt application rates during 
snowy days surrounding the RWIS station were extracted from the AVL plow truck dataset. Finally, the 
road surface grip levels were matched with salt application rate data on snowy days for further analysis. 
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Figure 22. Flowchart of RWIS and AVL data processing. 

Figure 23 shows the change in road grip level with salt application during the snowstorms from 
1/14/2022 to 1/16/2022 and from 2/24/2022 to 2/25/2022. A high grip level indicates safe road surface 
condition for driving; a medium grip level means some degradation of grip has occurred; and a low grip 
level represents obvious and substantial traction loss. The data shows that the road grip level changed 
from high to medium or low after the storm started, then it was improved to high following salt 
application and termination of the snowstorm.  
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(b) 

Figure 23. Road grip level (blue dots) and salt application (orange dots) during the snowstorms: (a) from 
1/14/2022 to 1/16/2022; and (b) from 2/24/2022 to 2/25/2022. 

  

The integrated datasets were used to analyze salt application rates and road grip levels during the 2021-
2022 and 2022-2023 winter seasons. Figure 24 (a) shows that the duration of snow events ranged in 
length from hours to days. During each snowstorm, multiple salt applications were applied at the RWIS 
site, and the time interval between salt applications varied. For each observation of road grip level (blue 
points in Figure 23), the first three sequential salt applications (orange points in Figure 23) after the 
snowstorm were extracted and analyzed. The first, second, and third sequential salt application rates 
are denoted as Q-1, Q-2, and Q-3, and their ranges in two winter seasons are illustrated using boxplot as 
shown in Figure 24 (b). The horizontal line and cross symbol in the middle of the box indicate the 
median and average values, respectively. It was found that the average values of three salt application 
rates were similar. However, the ranges of salt rates for different applications were found varied, and 
the salt rate of Q-3 was higher than those of Q-1 and Q-2.  
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Figure 24. Boxplots of (a) snowstorm duration and (b) salt application rates Q-1, Q-2, and Q-3 in two winter 
seasons. 

Long Short-Term Memory (LSTM) Model Development 

6.1.2.1 RNN for Temporal Pattern of RWIS Data 

RWIS stations monitor road surface conditions and weather variables continuously. The time series data 
of road surface grip level is reported in 5-min. intervals. It is needed to analyze grip levels considering 
the potential influences of weather variables using a robust machine learning model. While traditional 
machine learning methods (such as support vector machine, random forest, etc.) are versatile and 
applicable, these models inherently lack the incorporation of temporal information. In other words, the 
models operate by treating each data point independently without considering the order or timing of 
observations.  

A recurrent neural network (RNN) can store the patterns of recent input events in the form of 
activations (short-term memory) using feedback connections. However, time delays between input data 
and their corresponding response signals are substantial, and the technique of backpropagation in feed 
backward networks with restricted time windows is implemented in the RNN. Backpropagation, a 
common algorithm for calculating gradients of the loss function to minimize the error in prediction, 
accounts for the sequential nature of the data, which adds complexity due to dependencies between 
time steps. By focusing on a limited number of recent time steps with a restricted time window, the 
model can avoid the pitfalls of long-term dependencies and reduce computational complexity. 
Therefore, RNN suffers from short-term memory since it is difficult to extract, carry, and pass patterns 
from earlier steps to later ones in a long sequence. In the process of backpropagation in RNN, the 
problem of blowing-up or vanishing gradient, in which a gradient value becomes smaller as it back 
propagates over time, may exist depending on the size of applied weights and dramatically slows down 
the learning process. Therefore, the road grip levels in the long term cannot be handled appropriately 
using an RNN structure, and another deep learning model for long-term time series data is needed to 
investigate the propagation of road grip levels in the winter season. 

6.1.2.2 Principle of LSTM 

Long Short-Term Memory (LSTM) is a more advanced RNN architecture that was originally designated to 
deal with chronological sequences with better long-range dependencies. The standard LSTM structure 
has been widely used to solve the problem of long-term dependency (Gers et al., 1999). The internal 
mechanisms named gates in LSTM are capable of regulating the information flow, allowing relevant 
information to be passed down the long chain of sequences to make predictions (Van Houdt et al., 
2020).  

The key elements of an LSTM model include cell states and various gates. The cell state is utilized to 
carry and transfer relative information (including variables related to the weather, pavement, and salt 
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application in this study) down the sequence chain, which works as the “memory” of the network. Data 
is transferred from preceding temporal stages to subsequent ones, decreasing the influence of short-
term memory. In the process of transferring information in a long sequence, gates are applied to keep 
or discard information. During the training process, the gates, which are diverse neural networks, 
dictate the information that should be retained or discarded. Figure 25 illustrates the typical LSTM 
structure with cell state and gates.  

 

 
Figure 25. Illustration of LSTM model with layers and cell states. 

6.1.2.3 LSTM Model Structure and Development 

In the LSTM model, the various values within the internal cell states are updated according to the input 
data. The time-dependent variables related to road surface temperature, weather conditions, and salt 
application during the snow events were considered in the model development to predict the temporal 
evolution of pavement friction (Table 10). This allowed for the periodic change of road surface friction 
before and after salt application and the effect of time lag with respect to the snow event to be 
considered. All the RWIS variables were first checked, but only the atmospheric variables showing 
significant impact on the grip level were used to develop the predictive model. 

Table 10. Inputs and output of LSTM model. 

Items Variables 
Output Road surface grip levels from time t to time t+19 
Inputs Road surface grip levels from time t-20 to time t-1  
Inputs Weather variables from time t-20 to time t-1 
Inputs Salt application rates during the snowstorm period (denoted as 

Q1, Q2, and Q3) 
 

The model was trained with 50% of the field data collected during the snow events of two winter 
seasons from November 2021 to March 2023. The roadway grip levels during the entire snow season 
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can be automatically predicted using the LSTM model. Due to the limited occurrences of snowstorms, 
the processed dataset was extremely imbalanced with large amounts of high friction observations, 
which increased the complexity of data analysis and model development.  

During the training and testing processes, the LSTM model assimilated the physical principles from the 
input and observed data and were fine-tuned to predict the road surface grip levels. Tuning of 
hyperparameters, including depth of dense layer, learning rate, activation function, batch size, etc., is 
another critical issue in establishing the structure of a deep neural network like the LSTM model. A 
dense layer in an LSTM model serves as a crucial component for transforming the output of the LSTM 
units into the desired format for predictions or further processing. Optimization algorithms, which 
enable a modeling process to learn from a given data set, were used to find the maximum and minimum 
of an objective function, or the error or loss. The optimization algorithm used was an extension of the 
stochastic gradient decent procedure for the iterative updating of network weights based on the 
training data. It is an efficient method for dealing with a large problem with a lot of data or parameters. 
This technique is commonly implemented for deep learning applications in natural language processing 
and computer vision (Kingma & Ba, 2014).  

A range of training choices and LSTM model parameters were tweaked to obtain the best results. The 
parameters of neural network were modified and determined based on a specific loss function of an 
iterative step. Table 11 summarizes the range of hyperparameters used for optimization. Learning rate is 
utilized to handle the rate at which an algorithm updates the parameter estimates or learns the values 
of parameters, and a smaller value of learning rate will make the learning procedure of LSTM model 
slower and provide a smoother learning curve. Depth of dense layers indicates the number of layers 
except for the input and output layers, and the number of dense nodes represents the number of nodes 
in the dense layers. Complicated neutral network with more depth of dense layer, number of dense 
nodes, will increase the complexity of learning procedure. The batch size is the number of sequences 
which are forward to the network before the gradients are calculated, and a smaller batch size will 
increase the learning time.  

Table 11. Range of Hyperparameters in Model Optimization 

Model Parameters  Range 
Learning rate 1e-4~1e-2 
Depth of dense layers 0~2 
Number of dense nodes 8~512 
Batch size 64~128 
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Analysis of Prediction Results on Surface Grip 

6.1.3.1 Prediction Accuracy of Surface Grip 

To validate the model using an independent dataset, the developed LSTM model was implemented to 
predict road surface friction during the winter season from October 2022 to April 2023. Precision, recall, 
and F-measure values with corresponding confusion matrix plotted, which work for both binary and 
multiclass classification issues, were computed to quantify the performance of the trained LSTM model, 
especially for the imbalance classification. Table 12 presents the precision, recall, and F1-score values of 
the proposed model for forecasting pavement friction levels. The LSTM model shows good accuracy 
even with the imbalanced data for grip at high, medium, and low levels.  

Table 12. Precision, recall, and F1-score values of the LSTM model. 

 Category Precision Recall F1-Score 
High 1 1 1 
Medium 0.62 0.72 0.67 
Low 0.97 0.87 0.92 

 

Figure 26 (a) illustrates the confusion matrix of the LSTM model to classify road surface grip levels. 
Figure 26 (b) presents the comparison between the measured and predicted surface grip levels of the 
independent test dataset. Most of the measured and predicted road surface grip levels were found to 
overlap, but a few low grip levels were misclassified into medium or high levels.  

 

 
(a)                                                             
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(b) 

Figure 26. (a) Confusion matrix of the LSTM model; and (b) Comparison between the measured and predicted 
values in the testing dataset. 

           

The developed LSTM model was a data-driven model established according to the hidden statistical 
relationships between road surface grip and various inputs related to atmospheric condition, surface 
temperature, and salt application during snowstorms. The analysis results above have indicated the 
ability of the proposed LSTM model to effectively learn long dependencies given extremely imbalanced 
dataset. 

6.1.3.2 Effect of Salt Application on Surface Grip 

Sensitivity analysis was conducted to investigate the impact of salt application rate on road surface grip 
level using the developed LSTM model. The current salt application rate was considered as the baseline 
case in the analysis. The salt application rate was increased or decreased by 50-100 lb./ln-mi as 
compared to the baseline case, and the corresponding road surface grip level was quantified. Figure 27 
(a) shows the linear relationship between change in salt application rate and grip level. Figure 27 (b) 
shows the change of time periods needed to achieve grip improvement after salt application to the road 
surface. A negative value means the road grip level will improve more quickly compared to the original 
salt application rate. The results indicated that the road grip level tends to improve more quickly when a 
higher salt application rate is applied to the road surface and vice versa.  
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(a)                                                                 (b)      

Figure 27. Effect of salt application on (a) grip levels (Medium: left axis; Low: right axis); and (b) timing of grip 
level improvement. 

Decision-Making of Salt Application 

The LSTM model can be further used as an event-based decision-making tool for dynamic adjustments 
of salt application in winter maintenance. A dynamic decision-making process for winter road 
maintenance operation is proposed to determine the salt rate based on the desired grip level at road 
surface using the LSTM model, as illustrated in Figure 28. In the first trial, the initial value of the salt 
application rate is input to the LSTM prediction model given the weather conditions collected at the 
RWIS station. The predicted road surface grip level after the salt application is derived and compared 
with the grip levels before salting to evaluate the effectiveness of salt application. If the grip levels are 
found to improve after salt application, the operation is considered efficient. If the grip levels are found 
to be unchanged or even reduced, the operation is considered inefficient, and the salt application rate 
needs to be increased in the second trial. This procedure of trial and adjustment will continue until the 
achieved surface grip level is considered acceptable from the agency’s point of view.  
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Prediction of road 
surface grip level
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Weather Conditions 
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Figure 28. Flowchart of decision-making process using the developed LSTM model and RWIS data. 

  The effect of salt application on surface grip is further analyzed for individual snow events. 
Figure 29 shows example results for the snow event on 1/25/2022. The road surface grip levels with the 
higher (increase by 50 lb./ln-mi in Figure 29 (b) and 100 lb./ln-mi in Figure 29 (c)) or lower (decrease by 
50 lb./ln-mi in Figure 29 (d)) salt application rates in the snow event were predicted and compared with 
the baseline case with the original application rate (113 lb./ln-mi) applied in the field. The results 
indicate that the influence of salt application rate on road grip levels can be analyzed case-by-case at 
different snow events for winter roadway maintenance. 
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(b) 

 

 
(c) 

 

 
(d) 

Figure 29. (a) Weather variables during the snowstorm on 1/25/2022 (salt application rate: 113 lb./ln-mi); Effect 
of salt application on roadway grip level during the snowstorm: (b) increase of 50 lb./ln-mi; (c) increase of 100 

lb./ln-mi; and (d) decrease of 50 lb./ln-mi. 

The interaction effects of climate conditions and salt application on roadway friction were analyzed by 
observing the improvement of grip level in two different snow events, as the same change of salt 
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application rate is applied. Figure 30 shows the climate variables during the snowstorms on 3/7/2022 
and 12/15/2022 and the effects of salt application on roadway grip level. Figure 30 (a) and (c) show that 
the road surface temperature changes continuously, while the precipitation (snow) changes with the 
snowstorms. The salt application rates were 275 and 245 lb./ln-mi, respectively. The change of road 
surface grip level due to snow is clearly observed, as shown in Figure 30 (b) and (d). It was found that 
the predicted roadway grip level was more sensitive to the change of salt application rate on 3/7/2022 
during the snowstorm with the colder temperature. This indicates that roadway grip levels tend to be 
impacted by salt application rate when the temperature is lower.  

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

Figure 30. (a) Climate variables on 3/7/2022 (salt application rate 275 lb./ln-mi); (b) Effect of salt application on 
road surface grip level on 3/7/2022 ; (c) Climate variables on 12/25/2022 (salt application rate 245 lb./ln-mi); 

and (d) Effect of salt application rate on road surface grip level. 

 

A hypothetical case was analyzed to see the change of road surface grip with and without salt 
application. The comparison results using the storm event on 2/16/2023 are shown in Figure 31. The salt 
application rates were 0, 13, 63, and 113 lb./ln-mi, respectively. Compared to the scenario of no salt, the 
roadway surface grip improved earlier by 5-10 minutes with salt applications and more salt improved 
grip faster.  
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(a) 

 
(b) 

Figure 31. (a) Climate variables on 2/16/2023; and (b) Effect of salt application on road surface grip level. 

 

In the common guideline of winter maintenance used by state agencies, the salt application rate is in the 
range of 100-300 lb./ln-mi and determined based on surface temperature and snow intensity  (Du et al., 
2019). More salt is suggested for lower temperatures and higher storm intensity, but the salt rate is 
usually kept constant in the storm event. This method is simple to be implemented but cannot consider 
the state of roadway friction after change in the decision making of salt application. On the other hand, 
the LSTM model can be used to predict the time-dependent evolution of surface grip levels with the 
inputs of weather parameters, road surface temperature, and salt application rates. The sequential 
effects of input features on the evolution of surface grip levels in the snow events are considered here. 
This allows real-time decision making of salt application based on grip status and environmental 
variables but has high requirement on the reliability of prediction model. 
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6.2 PRELIMINARY ANALYSIS WITH LIMITED MOBILE SENSOR DATA 

Data Collection and Processing 

6.2.1.1 Road Weather Information System (RWIS) Data 

Road weather data were collected from four RWIS stations located on the I-25 corridor in Colorado 
during February 2023. These include road surface temperature, air temperature (maximum and 
minimum), dew point, water thickness, road surface state, humidity, visibility, barometric pressure, wet 
bulb temperature, precipitation rate, precipitation intensity, precipitation accumulation, road surface 
type, road surface sensor type, road surface friction index, road surface freezing point, road surface 
salinity, road subsurface temperature, average wind speed, average wind direction, gust wind speed, 
gust wind direction, spot wind speed, spot wind direction. Figure 32 illustrates the change in snow 
intensity over time at one of the RWIS stations. Two snow events from 2/14/23 to 2/15/23 and from 
2/22/23 to 2/24/23 were observed, and the snow intensity was mostly light. The snow intensity data 
was processed for further analysis to determine the timing of snow events when road salt was applied 
during winter maintenance operations using multiple data sources, including road surface condition 
data and salt application data from AVL on plow trucks.  

 
Figure 32. Snow intensity over time in February 14-24, 2023, from RWIS stations along I-25 in Colorado. 

6.2.1.2 Road Surface Condition Data 

Teconer Road Condition Monitor (RCM) is a non-contact sensor that uses a model-based friction meter, 
in this case installed on snowplow trucks. The measurement system detects the presence and amount of 
ice and/or water on a road surface. From this and other data measurements, the built-in model 
determines the coefficient of friction, which corresponds to the friction between the road surface and 
the vehicle’s tires. The model was developed using braking deceleration measurements as a reference, 
which indicates fair agreement with some variation. The output data of the mobile sensor is updated 
approximately once per second (Teconer, 2021).  
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Two snowplow trucks with both RCM mobile sensors and AVL data actively being collected 
simultaneously were selected along the Interstate Highway I-25 corridor in Colorado3. Figure 33 shows 
movement of the two plow trucks (dots in different colors) on the I-25 corridor. The RCM mobile sensor 
data collected during the snow events in February 2023 was extracted for analysis. To investigate the 
influence of road weather variables, air temperature, road surface temperature, surface state, and 
water thickness before and after salt applications were considered. Friction coefficient values ranged 
from 0.20 (hard ice) to 0.81 (dry surface).   

   
Figure 33. Map of AVL location data from two plow trucks on the I-25 corridor. 

 

3 At the outset of this project two snowplow trucks were actively collecting both RCM and AVL data. Later in the 
project additional snowplow trucks had the capability to collect both RCM and AVL data but one or both data 
elements were not available for various reasons.  
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6.2.1.3 Salt Application Data from AVL on Plow Trucks 

AVL data from the snowplow trucks allowed for real-time salt application rate data to be collected, 
along with friction data from RCM sensors installed at the same plow truck. The salt application data 
from the I-25 corridor during the snow events in February 2023 was extracted, as shown in Figure 34. 
Friction measurement data collection timing was considered relative to the timing of salt application. 

 

(a) 

 

(b) 

Figure 34.  Salt application rate from one plow truck during the snowstorm: (a) February 15-16, 2023, and (b) 
February 22-23, 2023. 

6.2.1.4 Data Integration 

The timestamps of observations were different among the Teconer RCM sensor (friction) and GeoTab 
sensor (AVL and salt application) on the snowplow truck, and the sensors at the RWIS station. The 
coordinates from AVL data were provided to locate the snowplow trucks on the map. Integrating and 
preprocessing datasets was challenging due to the variable start and end times of snow events, road 
surface conditions, and salt application along the route. The information on friction, salt applications, 
and RWIS data were integrated based on the coordinates of observations during snow events.  
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 Figure 35 shows the salt application data from the two snowplow trucks near the RWIS stations after 
data integration in February 2023. The locations of four RWIS stations are marked as red stars on the 
maps. The salt application data is mapped along I-25 from milepost 251.25 (Southbound 1.3 miles south 
of CO-60) and I-25 milepost 247.6 (Northbound 3.2 miles north of WCR-34). The size and color of the 
mapped dots indicates the values of salt application rates, and larger and darker dots represented 
higher salt application rates. Since snowplow trucks were moving along the I-25 corridor during the 
snow events, the start and end of the snow event for each RCM friction dataset were decided based on 
the snow intensity data from the nearest RWIS station.       

 
Figure 35. AVL salt application data from spreader sensors on the two plow trucks near the RWIS stations. 

The integrated data were used to analyze how road surface friction changes after salt application at 
different weather conditions. Table 13 shows the selected variables from RWIS, RCM, and AVL data sets. 
To consider the effect of snow accumulation on surface friction, the time period between the first 
friction measurement and the start of a snow event and the time period between the second friction 
measurement and the start of a snow event was determined based on the RWIS, RCM, and AVL data. 
Additional input variables included road surface state and weather conditions before and after the salt 
application, such as air temperature, road surface temperature, water film thickness, and dew point 
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temperature, timing of friction measurement after salt application, timing of friction measurements 
after snow event start, and solid material (salt) application rate. The output was the difference in 
roadway surface friction coefficients before and after salt applications. The total number of observations 
was 435 due to limited data availability.  

Table 13. Summary of roadway surface grip, weather condition, salt application data. 

Data 
Source 

Symbol  Description  Range Type 

RCM411 Delta Friction Change of Friction coefficient 
before and after salt 
applications 

0~0.62 Output 

RCM 411 Ta_B Air Temperature before salt 
application 

-23.4~0.6°C Inputs 

RCM 411 Tsur_B Surface temperature before 
salt application 

-18.7~0.44°C Inputs 

RCM 411 State_B Road surface state before salt 
application 

N/A Inputs 

RCM 411 Water_B Water thickness before salt 
application 

0~0.5 mm Inputs 

RCM 411 Tdew_B Dew point before salt 
application 

-25.2~0°C Inputs 

RCM 411 Ta_A Air Temperature after salt 
application 

-24.4~4.8°C Inputs 

RCM 411 Tsur_A Surface temperature after salt 
application 

-20.92~1.09°C Inputs 

RCM 411 State_A Road surface state after salt 
application 

N/A Inputs 

RCM 411 Water_A Water thickness after salt 
application (snow-to-liquid 
ratio of 10:1) 

0~0.509 mm Inputs 

RCM 411 Tdew_A Dew point after salt 
application 

-26.4~0°C Inputs 

AVL  Solid 
Material Rate 

Salt application rate 0.3~228.3 
lb./ln-mi. 

Inputs 

AVL AfterT Timing of friction 
measurement after salt 
application 

0.001~0.86 
hour 

Inputs 

RWIS BeforeSnowT Period between the first 
friction measurement and 
snow start  

0.002~0.52 
hour 

Inputs 

RWIS AfterSnowT Period between the second 
friction measurements and 
snow start 

-0.5~0.42 hour Inputs 
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Machine Learning Model Development 

Traditional statistical regression models were first developed to investigate the influence of salt 
application rate on the change of roadway surface friction coefficients before and after salt applications. 
The statistical regression model performance was poor due to the variation of weather conditions 
during snow events. Therefore, machine learning-based regression models were developed using the 
integrated dataset, including support vector regression, random forest, and gradient boosting 
regression. 

6.2.2.1 Machine Learning Algorithms 

Support vector regression (SVR) is a machine learning technique that applies the principles of support 
vector machine learning to regression issues. The main objective of SVR is to find a function that 
approximates the relationship between the input features and the target variable while minimizing the 
error. In SVR, the goal is to find a hyperplane that fits as many data points as possible within a specified 
margin of tolerance. This is achieved by solving an optimization problem that involves minimizing the 
loss function, which penalizes errors outside the margin, and maximizing the margin around the 
predicted values. The formulation of the SVR optimization problem involves the use of a loss function, 
typically the epsilon-insensitive loss function, and the regularization term to control the complexity of 
the model (Drucker et al., 1996, Suykens et al., 2002, Smola et al., 2004).  

Random Forest is a powerful ensemble learning method that combines the predictions of multiple 
decision trees to enhance predictive accuracy and generalize well to unseen data. The core principle of 
Random Forest lies in creating an ensemble of decision trees, where each tree is trained on a random 
subset of the training data and a random subset of features. This randomness introduces diversity 
among the trees, leading to a more robust and accurate model. The final prediction of the Random 
Forest is generated by aggregating the predictions of individual trees, typically through majority voting 
for classification tasks or averaging for regression tasks. The algorithm is known for its ability to handle 
high-dimensional data, capture complex interactions, and provide robust predictions. The mathematical 
formulation of Random Forest involves the construction of multiple decision trees and the aggregation 
of their predictions using ensemble methods, adding an element of randomness and diversity to the 
model (Breiman, 2001, Cutler et al., 2007, Liaw & Wiener, 2007). 

Gradient Boosting Regression is a popular ensemble learning technique that builds a predictive model by 
combining multiple weak learners, typically decision trees, in a sequential manner. The principle of 
Gradient Boosting Regression involves fitting a series of decision trees to the residuals of the previous 
tree, with each subsequent tree focusing on the errors of the previous ones. The algorithm minimizes a 
loss function by iteratively adding weak learners to the ensemble, where each learner is trained to 
correct the errors made by the previous ones. The final prediction is obtained by aggregating the 
predictions of all the individual trees. The key idea behind Gradient Boosting Regression is the use of 
gradients of the loss function with respect to the predicted values to update the model parameters in a 
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way that minimizes the loss. The algorithm uses a learning rate parameter to control the contribution of 
each tree to the overall model (Friedman, 2001, Rosa, 2010, Chen et al., 2016). 

6.2.2.2 Development of Machine Learning Models 

The observation dataset was divided into a testing subset (75%) and a training subset (25%) to develop 
three machine learning models, including support vector regression, random forest, and gradient 
boosting regression. Tuning of training hyper-parameters was conducted for each regression model. For 
example, for the random forest model, the number of instances in the ensemble, metric to capture 
information gain, number of features to evaluate, and whether to use bootstrap sampling were 
considered in the hyper-parameter tuning. The basic idea behind it is to generate a grid of hyper-
parameters and try all the combinations automatically to search for the optimal hyper-parameters to 
enhance accuracy. The optimized model structure was used to predict the change of friction coefficients 
and analyze the most important variables according to the SHAP values.  

Figure 36 shows the predicted versus actual values of friction coefficient change following salt 
application for the support vector regression, random forest, and gradient boosting regression models. 
The plots of random forest and gradient boosting regression models suggest better outcomes compared 
to that of the support vector regression model.  
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(b) 

 

(c) 

Figure 36. Predicted versus actual values of friction coefficient changes after salt application using (a) support 
vector regression, (b) random forest, and (c) gradient boosting regression. 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared value are common 
metrics used to evaluate the performance of regression models. RMSE is a measure of the average 
magnitude of the errors between predicted and actual values, calculated by taking the square root of 
the average of the squared differences between predicted and actual values. MAE, on the other hand, 
measures the average magnitude of the errors without squaring them, providing a more straightforward 
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interpretation of the model's performance. R-squared value, also known as the coefficient of 
determination, quantifies the proportion of the variance in the dependent variable that is predictable 
from the independent variables. It ranges from 0 to 1, with higher values indicating a better fit of the 
model to the data.  

Table 14 illustrates the metrics of regression models. The results show that the random forest model 
outperformed according to the R-squared values, and the RMSE values of the random forest and 
gradient boosting regression models were similar. The fitted regression models were applied to analyze 
the variable importance and derive the optimal salt application rate using the SHAP technique.  

Table 14. Model performance comparison of predicted versus actual change in friction coefficient after salt 
application. 

Performance 
Metrics 

Support Vector 
Regression 

Random Forest Gradient Boosting 
Regression 

R^2 (Train) 0.77 0.90 0.99 

R^2 (Test) 0.63 0.74 0.71 

RMSE 0.14 0.07 0.08 

MAE 0.11 0.05 0.06 

6.2.2.3 Analysis of Influential Variables 

Sophisticated machine learning algorithms can provide accurate predictions, but it is challenging to 
interpret the model. Thus, in model interpretation, SHAP is used to measure each feature’s 
contributions to the final prediction of the model by assigning a SHAP value to each feature. A higher 
average SHAP value indicates a more important parameter. SHAP values interpret the process of 
deriving the final model output by starting from the base value that would be a prediction if none of the 
features are known, after which SHAP values are incrementally calculated conditioned on one feature at 
a time. The feature’s contribution is determined by accumulating all the feature combinations. When 
the addition of a feature increases the output value, it has a positive SHAP value. 

 In this study, global interpretation of the derived model was conducted by calculating the SHAP 
values, and the positive and negative correlations between variables and prediction were illustrated by 
the SHAP value plots. SHAP (SHapley Additive exPlanations) is a game-theory approach that generates a 
unified framework to interpret any machine learning models (Shapley, 1988). The principle of SHAP is 
based on Shapley values, which are obtained from cooperative game theory and allocate the overall 
contribution of each feature to the prediction outcome. SHAP values offer a fair and consistent way to 
attribute the impact of individual features on the model's output by considering all possible orderings of 
feature importance. By calculating SHAP values for each feature, one can gain a comprehensive 
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understanding of how the model arrives at a particular prediction and identify the key factors 
influencing the outcome. This interpretability aspect of SHAP makes it a powerful tool for explaining 
complex machine learning models and facilitating informed decision-making in various applications, 
including predictive modeling, risk assessment, and feature engineering (Lundberg & Lee, 2017). The 
Shapley kernel is a function that assigns a weight to each subset of features based on their importance 
in determining the model output. It measures the impact of adding or removing a feature from the 
subset on the prediction outcome. SHAP uses a weighted average of the Shapley values, known as the 
Shapley Additive Explanation, to explain the contribution of each feature to a particular prediction. This 
approach provides a coherent and interpretable way to understand the model's decision-making 
process (Lundberg et al., 2020).  

Figure 37 illustrates the calculated SHAP values for each regression model, including support vector 
regression, random forest, and gradient boosting regression models. The variables of greatest 
importance were consistent for different regression models. The features are sorted and plotted by 
decreasing importance. For example, according to the calculated SHAP feature, for the random forest 
model in Figure 37 (b), the most important variables included surface state after application, surface 
state before application, air temperature after application, water thickness before application, and 
surface temperature after salt application. The most important variables were consistent for three 
different machine learning models. The road surface states before and after salt applications reflected 
the change in road surface friction coefficients. Air temperature, road surface temperature, and water 
thickness indicated the road weather conditions, such as temperature and snow intensity, which were 
consistent with the determination of salt application rate based on road surface temperature and snow 
intensity in the winter maintenance  guidelines implemented by several state DOTs (Du et al., 2019).  
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(c) 

Figure 37. SHAP feature importance for machine learning models: (a) support vector regression, (b) random 
forest, and (c) gradient boosting regression. 

Sensitivity Analysis of Salt Application Rate 

To analyze the effect of salt application rate on road surface grip, the SHAP value for solid material 
application rate was plotted in a dependence plot using the random forest model. A dependence plot is 
a type of scatter plot that displays how a model's predictions are affected by a specific feature, such as 
the salt application rate in this case study. SHAP dependence plots are an alternative to partial 
dependence plots and accumulated local effects. In general, the salt application rate has mostly a 
positive effect on the model, and the optimal salt application rate is needed to establish an efficient and 
effective winter roadway maintenance program.  

In general, solid material application rate is determined by road surface temperature and snow 
intensity. However, the recommended salt application rate varied in different states. For example, when 
road surface temperature was > 26 °F, 20 ~ 26 °F, and < 20 °F, the recommended salt rates were 100, 
125, and 150 lb./ln-mi for light snow in Iowa. In Colorado, the weather conditions of snow and freezing 
rain were considered, and a wide range of salt application rates (like 75~150 lb./ln-mi) was 
recommended for each temperature range, including > 30 °F,  25~30 °F, 20~25 °F, 15~20 °C, and < 15 °C 
(Du et al., 2019). Light snow was observed at the RWIS station in February 2023. Therefore, the SHAP 
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values were calculated for the scenarios of road surface temperature > 26 °F, 20~26 °F, and < 20 °F, 
respectively.  

Figure 38 presents the SHAP dependence plot of solid material application rate based on the random 
forest model. Every dot was a single prediction from the dataset with the specific road surface 
temperature. The x-axis indicates the value of the selected feature (salt application rate in this example), 
and the y-axis indicates the calculated SHAP value for the corresponding feature. The changing trend or 
slope of the SHAP value suggested that the selected feature changed the output of the model for the 
sample’s prediction.  

The analysis results indicated that road surface grip improved as the salt application rate increased 
when the salt application rate was less than 80 lb./ln-mi. The salt application rate has greater influence 
on road surface grip when it was less than 100 lb./ln-mi. The SHAP value suggests how much the feature 
contributed to moving the output from the base value (average model output) to the individual 
prediction. The negative values on the y-axis indicate salt application has negative effect on the friction 
changes as compared to the average model output. While the positive values suggest salt application 
has a positive effect on the friction change as compared to the average model output. Thus, the 
changing trend or slope of predictions is used to indicate the variable’s influence, and an increasing 
trend indicates the positive influence on the output (of salt application on roadway friction).  

   
 (a) 
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(b) 

 
(c) 

Figure 38. SHAP dependence plot of solid material application rate during a light snow event based on the 
random forest model when the road surface temperature is: (a) >26°F; (b) 20~26°F; and (c) < 20°F. 
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6.3 SUMMARY OF ALGORITHM RESULTS 

Iowa DOT Analysis 

Data-driven approaches were used to predict road surface grip levels using RWIS and AVL datasets. Data 
pre-processing was conducted to compile the dataset having continuous records of weather variables, 
surface temperatures, grip levels with discrete observations of salt application. An innovative LSTM 
neural network model was established to predict the time-dependent evolution of surface grip levels in 
winter seasons with the inputs of weather parameters, road surface temperature, and salt application 
rates. Importantly, the LSTM model considers the sequential effects of input features on the evolution 
of road surface grip levels in the snow events and thus can be used as a decision-making tool of salt 
application for winter operation maintenance.  

The proposed decision-making tool based on the developed LSTM model is a dynamic process through 
adjusting the salt application rate based on the prediction of road surface grip levels until the desired 
grip level is achieved. Given the weather conditions at the RWIS station, the change of road surface grip 
levels after salt applications can be updated automatically by the LSTM model. However, it is not a 
straightforward approach compared to a table-based guideline that is currently used by state DOTs. The 
interaction effects of salt application and weather conditions on the variation of road surface grip with 
time were analyzed, and the grip was found to be more impacted by salt application rates when 
temperatures were lower (colder), and snow intensity was greater. 

Although the feasibility of dynamic decision making of salt application is proved, the LSTM model is 
developed with a limited dataset and needs be further refined with more data covering large variations 
in climate conditions and geographical locations for improved accuracy and reliability. 

Colorado DOT 

Machine learning regression models were developed to predict the change of roadway surface grip after 
salt application data considering weather variables during the snow events. The mobile sensor, road 
weather, and salt application data collected on the I-25 corridor in February 2023 by Colorado DOT were 
analyzed. Among different machine learning models, random forest was found to fit the integrated 
dataset with the largest R-squared value and the smallest error value. The impact of each variable on 
the change of surface grip was investigated. The impact of salt application rate on friction coefficient 
change was found to be limited. The most important variables included surface state after application, 
surface state before application, air temperature after application, water thickness before application, 
and surface temperature after salt application.  



  

 

88 

 

There are concerns on road surface friction and weather condition data collected using the mobile 
sensors installed on the snowplow trucks with AVL data collection. This presents the limitation when 
applied to winter maintenance operations.  Integrating AVL data with other systems, such as snowplow 
sensors and road weather information from RWIS sites, can be complex due to the difference in 
timestamp and coordinate system and may not always provide reliable data. Due to the limited data 
collected in the project period, developing a decision-making tool for salt application was not achieved 
using mobile sensor data. More data is needed to develop predictive models of friction change due to 
salt applications at various weather conditions (air temperatures and snow intensity) using mobile 
sensor data in future studies. 
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 RECOMMENDATIONS 

7.1 SUPPORTING THE USE OF GRIP DATA TO INFORM SALT APPLICATION RATES - 
IMPLEMENTATION OF THE ALGORITHM AND DECISION MATRIX 

Maintaining road surface grip during snowstorms is critical for mobility and safety. Measurement and 
monitoring of roadway surface grip are critical components of road safety and maintenance practices, 
particularly in adverse weather conditions. Road surface grip can be used as a quantitative indicator for 
effective winter maintenance and can be used as a decision-making tool. This study used data-driven 
approaches to predict road surface grip (pavement friction) to inform salt application rates used in 
winter maintenance operations using RWIS based, mobile sensors, and AVL data. 

Iowa DOT RWIS Data 

Roadway surface grip and road weather parameters were collected from RWIS sites in Iowa. Traditional 
machine learning approaches were employed to develop predictive models of grip, which provided 
robust results and importance ranking of variables but required complex data pre-processing for model 
development. An advanced recurrent neural network (RNN) model using long short-term memory 
(LSTM) was developed with Bayesian optimization of model hyperparameters. The LSTM model 
considers sequential effects of surface temperature, atmospheric condition, and salt application on the 
time-dependent evolution of road surface grip and was found to effectively predict salt application rates 
in an event-based scenario. The interaction of salt application rate and weather condition on road 
surface grip were analyzed, and the grip was found to be more impacted by salt application rates when 
the air/pavement temperature was lower (colder).  

Recommendations based on these findings include. 

1. Use of a complex model has pros and cons. 
a. The complex model does a good job of predicting how friction will change with salt 

applications, but requires knowledge of modeling techniques, data management and 
QA/QC, and knowledge of how to interpret the results. 

2. Based on limited data 
a. This work is based on data from two RWIS sites in Iowa. To further the test this method, 

it is recommended that data from significantly more RWIS sites be incorporated.  
b. This work is based on categorical friction data. The friction data was provided as high, 

medium, or low; not the typical 1.0 – 0.0 coefficient of friction (µ) values. This means 
that the model could only determine if salt application led to a categorical change in 
friction, for example from high to medium. This limits the understanding of how salt 
application rate affects roadway friction.  

3. Variability of Influence of Salt at Cold Temperatures 
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a. The LSTM model showed that roadway grip is influenced by salt application rates when 
air/pavement temperatures were colder. This could be investigated further using data 
from storm events with temperatures at the lower working temperatures for salt (15-
20°F) to help identify the point of diminishing returns (increase salt application versus 
improvement in friction). 

Colorado DOT AVL and Mobile Sensor Data 

Roadway surface grip and road weather condition data were collected via mobile sensors on snowplow 
trucks in Colorado. The performance of machine learning models, including support vector regression, 
random forest, gradient boosting regression, artificial neural network, and Bayesian neural network, 
were compared, and the influence of road weather variables on the change of roadway friction 
coefficient before and after salt application were investigated using SHAP. The calculated SHAP values 
were used to develop recommendations for salt application rates. The impact of salt application rate on 
the friction coefficient was limited when compared to the weather condition variables. The most 
important variables included surface state after application, surface state before application, air 
temperature after application, water thickness before application, and surface temperature after salt 
application. The salt application rate of 100 lb./ln-mi was found to be an important threshold, below 
which the effect of salt on road surface grip was significant.  

Recommendations based on these findings include. 

1. Based on limited data 
a. The analysis is based on one month of data from two plow trucks. While additional data 

was provided (from more trucks and additional months), consistent data was not 
collected limiting the complete dataset.  

2. Communication between DOT, data provider 
a. Establishing an efficient data communication plan between an agency (DOT) and the 

data provider, and possible the data owner, will allow for easy data requests, open 
communication, and understanding of expectations about timing and needs. 

b. Data labeling often varies between agencies or sensor vendors. A recommendation is to 
create a crosswalk file, or file that defines how each agency or organization labels the 
data, the units of the data, and the source or sensors used to collect the data. This will 
provide a map for understanding of the data. 

3. Data Considerations 
a. For multiple data sources, the timestamp and coordinate system varied, requiring 

significant effort to match and convert the date, time and location information in pre-
processing. For example, to more easily integrate data from multiple sources and 
companies, it is recommended that the same coordinate system be used.  
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b. Salt application rates data varied significantly and rarely followed the suggested 
guidelines. This may be an artifact of how the data was recorded, such that actual salt 
application rates were not recorded due to the relatively large timestamp interval. 
Adjusting the timestamp interval to capture the actual salt application rate is 
recommended.  

c. Mobile sensors enable monitoring of road surface friction conditions at multiple 
locations. The development of data collection and data quality assurance/quality control 
(QA/QC) requirements is recommended to aid in a more robust data set that can be 
used to support the modeling of grip and salt application and development of a 
decision-making tool. 

General Recommendations 

The proposed machine learning models should be further verified with larger datasets in future studies. 
Additional considerations for the impact of road salt applications should look at economic cost and 
environmental impacts to determine the optimum salt application rate for varying winter roadway 
conditions and maintenance tools. 

The use of stationary RWIS based data versus mobile sensor data has pros and cons associated with 
each. For many states the RWIS system is robust with statewide coverage of the road network, often at 
specific distance intervals; but this data represents only a point location. Whereas mobile sensor data 
often has less coverage of a state but provides data wherever the vehicle travels. In the last few studies 
using both RWIS based and mobile sensor data, RWIS based data has produced the best results in terms 
of modeling roadway friction because the datasets are often larger and more representative (Weiner et 
al., 2023). For mobile data to provide similar quality of results, in terms of modeling roadway friction, 
data from many vehicles, repeated data collected from road segments, and longer-term data sets are 
required. This will require a concerted effort by an agency to ensure the mobile sensors are turned on, 
maintained, calibrated, and are reporting good quality data. 

Additional data to consider for future analyses includes the use of AVL based data, such as plow up and 
down and calibration records or certification for spreaders (solid and liquid). This will enhance the 
accuracy of model prediction on grip changes after winter maintenance treatments. 
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 CONCLUSIONS 

From the literature review the following conclusions can be made. 

• Use of road weather and road condition data can increase the efficiency of winter maintenance 
activities and reduce weather-related crashes. Roadway grip is a good indicator of when a road 
is safe or conversely unsafe. 

• There is an increasing interest in utilizing grip data to assess winter maintenance operations. 
Grip data is being used both internationally and in the United States as a maintenance threshold 
or performance metric. 

• There are several methods used to collect grip data, and each has its own pros and cons. Friction 
wheels or skid trailers provide high quality pavement friction data, but due to limited winter 
deployment in the U.S., data availability is limited. Stationary sensors mounted at RWIS sites can 
provide a robust grip dataset but provide limited spatial coverage. Mobile sensors can provide 
better data coverage of an area, but mobile devices should be installed on vehicles that travel 
routes frequently to provide sufficient data. Floating car data, or crowd sourced data, is an 
emerging data source which has been shown to provide robust grip datasets. Floating car data is 
being tested at the Swedish Transport Administration and in the Netherlands Highway Agency.  

• Machine learning is being used to predict road surface condition, temperature, and recommend 
salt application rates. Additionally, ML can be used to develop decision support systems for 
winter maintenance that can provide recommendations of treatment type and material. Grip 
data appears to be a valid input variable in these prediction models.  

• Data-driven winter maintenance operations will only succeed if the data used is of good quality. 
Conducting QA/QC on any data collected, maintenance of equipment, and calibration of both 
sensors and salt delivery systems (salt spreaders) is critical to ensure quality data is being 
collected. 

From the Survey the following conclusions can be made. 

• Eighteen states across the US indicated they use grip data in winter operations. The majority of 
the grip data was collected using stationary mounted non-contact sensors, with many also 
collecting grip data using mobile sensors. The collected grip data is being used to make real-time 
decisions, determine material application strategies, and for planning, and to a lesser extent for 
training and review of operations and forecasting. Many agencies indicated that the grip data is 
used in a variety of tools developed to support winter maintenance operations. 

From the Case Studies the following conclusions can be made. 

• While several transportation agencies have begun to incorporate roadway grip data into their 
winter maintenance operations, those highlighted in the case studies are in the early phases of 
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implementation. The complete picture of the benefits of integrating this data into decision-
making is not yet known. This is particularly the case with third-party grip data where this data 
only recently became available in the United States. However, as grip data becomes more 
readily available through various sources, the opportunities seem to be endless. Additionally, as 
programs like ITDs MCE mature, successes and lessons learned can be shared.  

• Transportation agencies that have begun to collect and integrate grip data into their winter 
maintenance practices have been able to optimize resources (e.g., material, labor), measure 
winter maintenance operations performance, and efficiently treat roadways by providing real-
time feedback and automating winter maintenance operations. Specifically, ITD is automating 
calculations that were previously done manually and MassDOT is working to automate the 
decision-making process for application rates at the spreader controller. 

From the development of the Algorithm the following conclusions can be made.  

• An RNN LSTM model can be used to predict friction evolution during the storm event and 
recommend salt application rates for decision making. Key model variables include roadway 
surface temperature, air temperature, salt application rate, and roadway grip. This method 
requires complex modeling and data management. The model found that roadway grip 
improved more quickly with increased salt application rates, especially at lower temperatures. 

• Grip data from both stationary RWIS sensors and mobile sensors were utilized in this effort. In 
both instances, challenges with the data limited the extent of the analysis. The RWIS based grip 
data was provided as categories (low, medium, high) and not as coefficient of friction values. 
The mobile data was very limited in quantity.  

• To support a more robust analysis, additional data from a variety of storm events is 
recommended. 

Recommendations based on the review of the literature, developed case studies, and the algorithm 
development are provided in Chapter 7: Recommendations. 

8.1 FUTURE RESEARCH 

The following future research or work will help support advancement of this research effort. 

• Continue work to test the developed models using more data, from a variety of storm types, salt 
application methods and strategies, etc. for decision making of salt application rates.  

• Identify and develop a data collection plan for mobile sensors where mobile data is routinely 
collected to create robust data sets to allow for analysis.  

• Develop a guidance document to address data needs, data management, coordination and data 
sharing between DOT and data providers for winter roadway maintenance. 
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• Develop a data management plan that addresses data sources, calibration required for 
spreaders and sensors, data collection frequency, data quality control procedures to perform 
before data is used in any analysis, and a crosswalk file to explain the data. 
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APPENDIX A – SURVEY INSTRUMENT 

CR 21-01 Grip Sensor Technology and Salt Applications Survey 

This survey has been created to help support Clear Roads and its member states in their understanding 
of how agencies are using roadway grip or friction information, what technology they used to capture 
this information, and how they are applying this information in winter operations.  

Information gathered in the survey will be used to inform other agencies on the prevalence of roadway 
grip data collection and use. Some of the identified instances will be used to create case studies 
highlighting various roadway grip data collection networks and how roadway grip has been integrated 
into operations and decision making.  

This research study was reviewed by the Montana State University Institutional Review Board 
(irb@montana.edu). Participation in this survey is voluntary and you may skip any question you do not 
want to answer and/or you can stop at any time. Proceeding with the survey indicates your consent to 
participate. The survey should take about 5 minutes. Any questions or comments can be directed to 
Karalyn Clouser of WTI/MSU at karalyn.clouser@montana.edu or (406) 529-0654. 

Thank you for your time. 

1. Does your agency/organization use roadway grip, or friction, data in winter operations?  
• Yes (If checked, continue to question 2.) 
• No (If checked, end the survey.) 

 

2. How does your agency collect roadway grip data? (Check all that apply.) 
 Stationary Road Weather Information Systems (RWIS) Mounted Sensors 
 Mobile Mounted Sensors on Vehicles  
 Skid Trailer or Friction Wheel 
 Floating Car Data or Crowd Sourced Data 
 Other (please specify): 

 
3. How does your agency use roadway grip data in winter operations? (Check all that apply.) 

 Forecasting 
 Planning (determining when to begin operations, identifying problem areas, etc.) 
 Real-Time Decision Making (routing, call in crews, etc.) 
 Material Application Strategies 
 Retrospective Review of Operations (Agency performance/cost review) 
 Other (please specify): 
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4. Does your agency incorporate roadway grip data in any tools (example: Maintenance Decision 
Support System (MDSS), Weather or Winer Severity Index (WSI), decision tree, etc.)? 

• Yes (If checked, continue to question 5.) 
• No (If checked, continue to question 6.) 

 

5. Please explain how your agency incorporates roadway grip data in any tools.  

 

6. Please provide the following information.  

Agency (road/airport): 

Location (country/region/state): 

 

7. May we follow up via email or phone to learn more about your roadway grip data availability, 
networks, tools used, etc.? 

• Yes (If checked, continue to question 8.) 
• No (If checked, end the survey.) 

 

8. Contact information  

Name: 

Email Address: 

Phone Number: 

 

We thank you for your time spent taking this survey. 
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APPENDIX B – INTERVIEW WITH NIRA DYNAMICS 

Interview with Björn Zachrisson, Product Strategist at NIRA Dynamics (Currently under review for 
approval by Bjorn, 10/28/2022) 

October 24, 2022 

• NIRA Dynamics is a software company only within the automotive industry. Software is within 
the ABS braking system. In the connected domain have software inside of vehicles and collect 
wheel speed signals for rotation and relation between the wheels. They derive a lot of 
information, e.g., friction, slip of wheels on the replica axel and plot the slip of the driving axel 
versus the torque. Their model calculations are based on experience from extensive tire and tire 
pressure testing. Can also provide information on “wet state” from windshield wiper blade data. 

• An example map displaying NIRA data in the UK was shared. This showed nearly 100,000 
vehicles from the full Volkswagen group family (Audi, Volkswagen, Skoda & Seat not available in 
the US) worth of data including road friction, ambient temperature, wet state, and road surface 
temperature (estimated – started testing last season). The map displays vehicle data from red to 
green. 

o Red – very slippery, like driving on ice, no self-driving support allowed from an 
automaker perspective.  

o Green – good enough to drive on autobahn (German highway system with no speed 
limit) at full speed, full self-driving support allowed from an automaker perspective. 

• Typically, friction data is measured in groups, so friction data may not be reported on all road 
segments. Their focus is on quality data not quantity.  

• Use case study:  
o KPIs – how much time was road slippery when it should not be, or how long was is 

slippery? 
o Identify trouble spots and treat early to avoid issues. 

• Looked at road friction and ambient (air) temperature and there was a strong correlation. Did 
not even consider treatments. (If they exclude the bridge temperature from the vehicles, then 
the air temperature is fairly accurate (+0.5 degrees), but RWIS air temperature is more accurate 
(+0.1 degrees). 

• Use friction (KPIs) to assess road condition and flag when sites are slippery when they should 
not be. Report as percent (%), only on the high-density road network. 

• Data delay is 3-10 minutes from collection to display. Data is stored in 10 minute time windows 
over 75 foot segments. In areas with poor cellular service, the data transmission may be delayed 
however Europe in general has great cellular coverage. 

• Provide alerts for high confidence situations e.g., very slippery, via email or text. 2021 alerts 
were 100% accurate, according to the Dutch DOT. First full-size fleet up and running in the 
Netherlands, then in Sweden. 

• DOTs in Netherlands/Sweden report accidents real-time on Twitter, so they have access to that 
data. 
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• An upcoming project with Aurora, teaming with Purdue will use NIRA data. Last winter was the 
first year of analysis of data from Indiana. Expecting a report and possibly a TRB presentation in 
2024.  

o We will follow up on results from this effort. 
o Here is another related Aurora project by researchers from Utah: Roadway Ice/Snow 

Detection Using a Novel Infrared Thermography Technology | Institute for 
Transportation (aurora-program.org) 

• Live road Maintenance feature, now for US data as well. The major drawback in the US is low 
penetration (availability of data from vehicles) of connected vehicles (VW and Audi). Work is 
ongoing (usually NDA limited) to get one American or multiple Asian original equipment 
manufacturers (OEM’s) to provide data, especially in rural areas.  

• Use historical data to see which roads are freezing first and prioritize them higher on the salting 
routes. 

• Use live data to see when the salt has no effect anymore, or for that matter see when it does 
give the intended effect. 

• Salt residue algorithm used by some weather forecasters is being paired with data to develop 
algorithms by other researchers - VTI (Swedish Federal Research Institute, Anna Arvidsson, TRB 
WM Committee Chair) and Swedish project. Ongoing project looking at forecast, salt residue, 
connected vehicles, to develop dynamic routing.  

o We will follow up to learn more about this effort. 

 

 

 

 

 

 

 

 

 

 

 

 

https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Faurora-program.org%2Fresearch%2Fin-progress%2Froadway-ice-snow-detection-using-a-novel-infrared-thermography-technology%2F&data=05%7C01%7Claura.fay1%40montana.edu%7C18bb72ba4aa64006676008dabb3b5593%7C324aa97a03a644fc91e43846fbced113%7C0%7C0%7C638028160766363302%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=CkL4SuXrKzFSSX%2BgExfqYv3%2BsTh39H%2FIA4licfS%2BfXM%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Faurora-program.org%2Fresearch%2Fin-progress%2Froadway-ice-snow-detection-using-a-novel-infrared-thermography-technology%2F&data=05%7C01%7Claura.fay1%40montana.edu%7C18bb72ba4aa64006676008dabb3b5593%7C324aa97a03a644fc91e43846fbced113%7C0%7C0%7C638028160766363302%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=CkL4SuXrKzFSSX%2BgExfqYv3%2BsTh39H%2FIA4licfS%2BfXM%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Faurora-program.org%2Fresearch%2Fin-progress%2Froadway-ice-snow-detection-using-a-novel-infrared-thermography-technology%2F&data=05%7C01%7Claura.fay1%40montana.edu%7C18bb72ba4aa64006676008dabb3b5593%7C324aa97a03a644fc91e43846fbced113%7C0%7C0%7C638028160766363302%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=CkL4SuXrKzFSSX%2BgExfqYv3%2BsTh39H%2FIA4licfS%2BfXM%3D&reserved=0
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APPENDIX C – CASE STUDY INTERVIEWEES 

Follow-up interviews were conducted to capture additional information for the case studies. Interviews 
were conducted with the following individuals and organizations (Table 15). 

Table 15. Case Study Interviewees 

Interviewee, Organization Case Study Topic 

Mark Goldstein, Massachusetts DOT Linking Salt Spreader Controller Data with 
Mobile Road Weather Information Sensors 

Dr. Chengbo Ai, University of Massachusetts 
Amherst 

Linking Salt Spreader Controller Data with 
Mobile Road Weather Information Sensors 

Steve Spoor, Idaho Transportation 
Department 

Snow Operations Application Suite 

TJ McNeff, Idaho Transportation Department Snow Operations Application Suite 
Tina Greenfield, Iowa Department of 
Transportation 

Third-Party Friction Data from Vehicles 

Alex Lee-Warner, Wejo  Third-Party Friction Data from Vehicles 
Neal Hawkins, Intrans, Iowa State University Third-Party Friction Data from Vehicles 
Zach Hans, Intrans, Iowa State University Third-Party Friction Data from Vehicles 
Skylar Knickenbocker, Intrans, Iowa State 
University 

Third-Party Friction Data from Vehicles 

Dan Schacher, Alaska Department of 
Transportation and Public Facilities 

Friction Data and Pikalert 

Gerry Weiner, National Center for 
Atmospheric Research 

Friction Data and Pikalert 

Amanda Siems-Anderson, National Center for 
Atmospheric Research 

Friction Data and Pikalert 
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